Variedade central para laços homoclínicos

Autor: Carnevarollo Júnior, Rubens Pazim [UNESP]
Jazyk: portugalština
Rok vydání: 2006
Předmět:
Zdroj: AlephRepositório Institucional da UNESPUniversidade Estadual PaulistaUNESP.
Druh dokumentu: masterThesis
Popis: Made available in DSpace on 2014-06-11T19:30:22Z (GMT). No. of bitstreams: 0 Previous issue date: 2006Bitstream added on 2014-06-13T20:07:43Z : No. of bitstreams: 1 carnevarollojr_rp_me_sjrp.pdf: 404426 bytes, checksum: 4ea777e4e28a9a139f9b0bcb3f7b0f7c (MD5)
O objetivo principal desse trabalho é provar, sob certas hipóteses de transversalidade e sobre os autovalores, que se uma família a um-parâmetro de equações diferenciais possuindo, para um determinado valor do parâmetro, um laço homoclínico conectado a um ponto de equilíbrio do tipo sela, então existe uma variedade central invariante, de dimensão dois, que contém o laçco homoclínico, que contém todas as trajetórias que permanecem numa vizinhança do laço homoclínico e ainda é tangente ao autoespaço gerado por autovetores associados aos autovalores que determinam o laço homoclínico.
The main goal of this work is to prove, under certain hypothesis of transversality and about the eigenvalues, that if a one-parameter family of ordinary differential equations possess, for a determined value of the parameter, a homoclinic loop connected to an equilibrium point of type saddle, then there exists an invariant center manifold, of dimension two, that contains the homoclinic loop, that contains all trajectories which stay in a small neighborhood of the homoclinic loop and that is tangent to the eigenspace spanned by the eigenvectors associated to the eigenvalues that determine the homoclinic loop.
Databáze: Networked Digital Library of Theses & Dissertations