Intersecções homoclínicas
Autor: | Bronzi, Marcus Augusto [UNESP] |
---|---|
Jazyk: | portugalština |
Rok vydání: | 2006 |
Předmět: | |
Zdroj: | AlephRepositório Institucional da UNESPUniversidade Estadual PaulistaUNESP. |
Druh dokumentu: | masterThesis |
Popis: | Made available in DSpace on 2014-06-11T19:26:56Z (GMT). No. of bitstreams: 0 Previous issue date: 2006-03-03Bitstream added on 2014-06-13T20:27:28Z : No. of bitstreams: 1 bronzi_ma_me_sjrp.pdf: 904425 bytes, checksum: 2344eb35a112034c2f1741b2e229f1ec (MD5) Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Estudamos intersecções homoclínicas de variedades estável e instável de pontos peródicos. Toda intersecção homoclínica produz um comportamento curioso na dinâmiôa. Nosso modelo de tal fenômeno é a famosa ferradura de Smale, a qual é um conjunto hiperbólico para um difeomorfismo. Além disso, estudamos dinâmica não hiperbólica cuja perda de hiperbolicidade é divido à tangências homoclínicas. Elas tem um papel central na teoria de sistemas dinâmicos. O desdobramento de uma tangência homoclínica produz dinâmicas muito interessantes. Neste trabalho estudamos a criação de cascatas de bifurcações de duplicação de período e um esquema de renormalização para uma tangência homoclínica. We study homoclinic intersection of stable and unstable manifolds of periodic points. Every homoclinic intersection produce a intricate behavior of the dynamics. Our model of such phenomena is the so called Smalesþs horseshoe, which is a hyperbolic set for a di eomorphism. We also study non hyperbolic dynamics whose lack of hyperbolicity is due to homoclinic tangencies. They play a central role in the theory of dynamical systems. The unfolding of a homoclinic tangency produce many interesting dynamics. In this work we study creation of cascade of period doubling bifurcations and a renormalization scheme for a homoclinic tangency. |
Databáze: | Networked Digital Library of Theses & Dissertations |
Externí odkaz: |