Mineração de padrões sequenciais e geração de regras de associação envolvendo temporalidade

Autor: João, Rafael Stoffalette
Jazyk: portugalština
Rok vydání: 2015
Předmět:
Zdroj: Repositório Institucional da UFSCARUniversidade Federal de São CarlosUFSCAR.
Druh dokumentu: masterThesis
Popis: Submitted by Aelson Maciera (aelsoncm@terra.com.br) on 2017-08-07T19:16:02Z No. of bitstreams: 1 DissRSJ.pdf: 7098556 bytes, checksum: 78b5b020899e1b4ef3e1fefb18d32443 (MD5)
Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2017-08-07T19:18:39Z (GMT) No. of bitstreams: 1 DissRSJ.pdf: 7098556 bytes, checksum: 78b5b020899e1b4ef3e1fefb18d32443 (MD5)
Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2017-08-07T19:18:50Z (GMT) No. of bitstreams: 1 DissRSJ.pdf: 7098556 bytes, checksum: 78b5b020899e1b4ef3e1fefb18d32443 (MD5)
Made available in DSpace on 2017-08-07T19:28:30Z (GMT). No. of bitstreams: 1 DissRSJ.pdf: 7098556 bytes, checksum: 78b5b020899e1b4ef3e1fefb18d32443 (MD5) Previous issue date: 2015-05-07
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Data mining aims at extracting useful information from a Database (DB). The mining process enables, also, to analyze the data (e.g. correlations, predictions, chronological relationships, etc.). The work described in this document proposes an approach to deal with temporal knowledge extraction from a DB and describes the implementation of this approach, as the computational system called S_MEMIS+AR. The system focuses on the process of finding frequent temporal patterns in a DB and generating temporal association rules, based on the elements contained in the frequent patterns identified. At the end of the process performs an analysis of the temporal relationships between time intervals associated with the elements contained in each pattern using the binary relationships described by the Allen´s Interval Algebra. Both, the S_MEMISP+AR and the algorithm that the system implements, were subsidized by the Apriori, the MEMISP and the ARMADA approaches. Three experiments considering two different approaches were conducted with the S_MEMISP+AR, using a DB of sale records of products available in a supermarket. Such experiments were conducted to show that each proposed approach, besides inferring new knowledge about the data domain and corroborating results that reinforce the implicit knowledge about the data, also promotes, in a global way, the refinement and extension of the knowledge about the data.
A mineração de dados tem como objetivo principal a extração de informações úteis a partir de uma Base de Dados (BD). O processo de mineração viabiliza, também, a realização de análises dos dados (e.g, identificação de correlações, predições, relações cronológicas, etc.). No trabalho descrito nesta dissertação é proposta uma abordagem à extração de conhecimento temporal a partir de uma BD e detalha a implementação dessa abordagem por meio de um sistema computacional chamado S_MEMISP+AR. De maneira simplista, o sistema tem como principal tarefa realizar uma busca por padrões temporais em uma base de dados, com o objetivo de gerar regras de associação temporais entre elementos de padrões identificados. Ao final do processo, uma análise das relações temporais entre os intervalos de duração dos elementos que compõem os padrões é feita, com base nas relações binárias descritas pelo formalismo da Álgebra Intervalar de Allen. O sistema computacional S_MEMISP+AR e o algoritmo que o sistema implementa são subsidiados pelas propostas Apriori, ARMADA e MEMISP. Foram realizados três experimentos distintos, adotando duas abordagens diferentes de uso do S_MEMISP+AR, utilizando uma base de dados contendo registros de venda de produtos disponibilizados em um supermercado. Tais experimentos foram apresentados como forma de evidenciar que cada uma das abordagens, além de inferir novo conhecimento sobre o domínio de dados e corroborar resultados que reforçam o conhecimento implícito já existente sobre os dados, promovem, de maneira global, o refinamento e extensão do conhecimento sobre os dados.
Databáze: Networked Digital Library of Theses & Dissertations