Multiplicidade de soluções para uma classe de problemas elípticos de quarta ordem com condição de contorno de Navier

Autor: Cavalcante, Thiago Rodrigues
Jazyk: portugalština
Rok vydání: 2018
Předmět:
Zdroj: Biblioteca Digital de Teses e Dissertações da UFGUniversidade Federal de GoiásUFG.
Druh dokumentu: Doctoral Thesis
Popis: Submitted by Erika Demachki (erikademachki@gmail.com) on 2018-03-23T22:13:05Z No. of bitstreams: 2 Tese - Thiago Rodrigues Cavalcante - 2018.pdf: 2200622 bytes, checksum: 39118adda6b7ceff14825da442b5be57 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2018-03-26T12:16:44Z (GMT) No. of bitstreams: 2 Tese - Thiago Rodrigues Cavalcante - 2018.pdf: 2200622 bytes, checksum: 39118adda6b7ceff14825da442b5be57 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Made available in DSpace on 2018-03-26T12:16:44Z (GMT). No. of bitstreams: 2 Tese - Thiago Rodrigues Cavalcante - 2018.pdf: 2200622 bytes, checksum: 39118adda6b7ceff14825da442b5be57 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2018-02-27
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
In the first two chapters, we consider the following problem \begin{equation*} \left \{ \begin{array}{rcll} \alpha \Delta^{2} u + \beta \Delta u & = & f(x,u)\, & \mbox{in}\,\, \Omega \\ u = \Delta u & = & 0 \, &\mbox{on } \,\,\, \partial \Omega, \end{array} \right. \end{equation*} where $\displaystyle{\Delta^{2} u = \Delta(\Delta u)-\,\mbox{biharmonic (fourth-order operator)}}$, $\alpha > 0$ and $ \beta \in \R.$ The subset $\displaystyle{ \Omega \subset \mathbb{R}^{N}\, (N \geq 4)}$ is as somooth bounded domain and $\displaystyle{ f \in C(\overline{\Omega} \times \mathbb{R},\mathbb{R}) }.$ In each of the results obtained, we will consider different technical hypotheses and characteristics for the nonlinear function $f$ e for the value of the constant $ \beta. $ In the third chapter, we study an equation of the concave type super linear, of the form: \begin{equation} \left \{ \begin{array}{rcll} \alpha \Delta^{2} u + \beta \Delta u & = & a(x)|u|^{s-2}u + f(x,u)\, & \mbox{in}\,\, \Omega \\ u = \Delta u & = & 0 \, &\mbox{on} \,\,\, \partial \Omega, \end{array} \right. \end{equation} where $\beta \in (-\infty, \alpha \lambda_{1}).$ We consider that the function $a \in L^{\infty} (\Omega)$ and $s \in (1,2).$ Finally, in the last chapter we will consider a fourth order problem in which nonlinearity is also of the convex concave type. More precisely, we study the following class of equations: \begin{equation} \left\{ \begin{aligned} \alpha \Delta^{2} u + \beta \Delta u & = \mu a(x)|u|^{q-2}u + b(x)|u|^{p-2}u&\,\,\,\,\ &\mbox{in}\,\, \Omega \\ u = \Delta u & = 0 & \,\,\,\,&\mbox{on} \,\, \partial \Omega, \end{aligned} \right. \end{equation} where the parameter $ \mu > 0 $, the powers $ 1
Nos dois primeiros Capítulos, consideramos a seguinte classe de problemas: \begin{equation*} \left \{ \begin{array}{rcll} \alpha \Delta^{2} u + \beta \Delta u & = & f(x,u)\, & \mbox{em}\,\, \Omega \\ u = \Delta u & = & 0 \, &\mbox{sobre } \,\,\, \partial \Omega, \end{array} \right. \end{equation*} onde $\displaystyle{\Delta^{2} u = \Delta(\Delta u)-\,\mbox{biharmônico},}$ $\alpha > 0$ e $ \beta \in \R.$ O subconjunto $\displaystyle{ \Omega \subset \mathbb{R}^{N}\,(N \geq 4)}$ será um domínio limitado e a não linearidade $\displaystyle{ f \in C(\overline{\Omega} \times \mathbb{R},\mathbb{R}) }.$ Em cada um dos resultados obtidos, consideraremos hipóteses técnicas e características diferentes para a função não linear $f$ e para o valor da constante $\beta.$ No terceiro Capítulo, estudamos uma equação do tipo côncavo super linear, da forma: \begin{equation*} \left \{ \begin{array}{rcll} \alpha \Delta^{2} u + \beta \Delta u & = & a(x)|u|^{s-2}u + f(x,u)\, & \mbox{em}\,\, \Omega \\ u = \Delta u & = & 0 \, &\mbox{sobre } \,\,\, \partial \Omega, \end{array} \right. \end{equation*} onde $\alpha > 0$ e $\beta \in (-\infty, \alpha \lambda_{1})$. Consideramos que a função $a \in L^{\infty}(\Omega)$ e que $s \in (1,2).$ Por fim, no último Capítulo vamos considerar um problema de quarta ordem no qual a não linearidade é do tipo côncavo-convexa. Mais precisamente, estudamos a seguinte classe de equações: \begin{equation*} \left\{ \begin{aligned} \alpha \Delta^{2} u + \beta \Delta u & = \mu a(x)|u|^{q-2}u + b(x)|u|^{p-2}u&\,\,\,\,\ &\mbox{em}\,\, \Omega \\ u = \Delta u & = 0 & \,\,\,\,&\mbox{sobre} \,\, \partial \Omega, \end{aligned} \right. \end{equation*} onde o parâmetro $\mu > 0$ e as potências $ 1 < q < 2 < p < 2 N /(N - 4)$. Adicionalmente supomos que as funções $\displaystyle{a, b : \Omega \rightarrow \mathbb{R} }$ sejam contínuas podendo trocar de sinal em $\Omega$ e que $a^{+},b^{+} \neq 0.
Databáze: Networked Digital Library of Theses & Dissertations