Existência de soluções não-negativas para uma classe de problemas semilineares elípticos indefinidos

Autor: Costa, Gustavo Silvestre do Amaral
Jazyk: portugalština
Rok vydání: 2017
Předmět:
Zdroj: Biblioteca Digital de Teses e Dissertações da UFGUniversidade Federal de GoiásUFG.
Druh dokumentu: masterThesis
Popis: Submitted by Erika Demachki (erikademachki@gmail.com) on 2017-03-27T17:45:29Z No. of bitstreams: 2 Dissertação - Gustavo Silvestre do Amaral Costa - 2017.pdf: 671324 bytes, checksum: fdf29c0b102f3ee24a198d5616ecd4b4 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-03-28T11:31:51Z (GMT) No. of bitstreams: 2 Dissertação - Gustavo Silvestre do Amaral Costa - 2017.pdf: 671324 bytes, checksum: fdf29c0b102f3ee24a198d5616ecd4b4 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Made available in DSpace on 2017-03-28T11:31:51Z (GMT). No. of bitstreams: 2 Dissertação - Gustavo Silvestre do Amaral Costa - 2017.pdf: 671324 bytes, checksum: fdf29c0b102f3ee24a198d5616ecd4b4 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2017-03-17
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
In this work we will discuss the existence of nonnegative solutions for a class of indefinite semilinear elliptic problems: (Pμ)   − u = λ1u+μg(x,u)+W(x)f(u), em u = 0, sobre ∂, where is a bounded smooth domain in RN, N ≥ 3, μ is a nonnegative parameter, λ1 is the first eigenvalue of the operator − under Dirichlet boundary conditions, W ∈ C(¯, R) is a weight function, f ∈ C(R,R), and g : ¯ ×R→R is a Carathéodory locally bounded function, i.e, for every s0 > 0, there is M := M(s0) > 0 such that |g(x,s)| ≤M for 0 ≤ |s| ≤ s0 and for almost every x ∈ ¯ .
Neste trabalho discutiremos a existência de soluções não negativas para os seguintes problemas semilineares elípticos indefinidos: (Pμ)   − u = λ1u+μg(x,u)+W(x)f(u), em u = 0, sobre ∂. onde é um domínio limitado suave de RN, N ≥ 3, λ1 é o primeiro autovalor de −, μ > 0, W ∈ C(¯, R) e f ∈ C(R,R), g : ×R→R é uma função Carathéodory localmente limitada, isto é, para todo s0 > 0 existe M(s0) > 0, tal que |g(x,s)| ≤ M(s0), para todo s ∈ [−s0,s0] e q.t.p em ¯ .
Databáze: Networked Digital Library of Theses & Dissertations