Incerteza nos modelos de distribuição de espécies
Autor: | Tessarolo, Geiziane |
---|---|
Jazyk: | portugalština |
Rok vydání: | 2014 |
Předmět: | |
Zdroj: | Biblioteca Digital de Teses e Dissertações da UFGUniversidade Federal de GoiásUFG. |
Druh dokumentu: | Doctoral Thesis |
Popis: | Submitted by Cássia Santos (cassia.bcufg@gmail.com) on 2014-11-11T12:06:48Z No. of bitstreams: 2 Tese Geiziane Tessarolo - 2014.pdf: 5275889 bytes, checksum: fb092b496eb6eae85e89c28d423c44d9 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Approved for entry into archive by Jaqueline Silva (jtas29@gmail.com) on 2014-11-17T15:10:55Z (GMT) No. of bitstreams: 2 Tese Geiziane Tessarolo - 2014.pdf: 5275889 bytes, checksum: fb092b496eb6eae85e89c28d423c44d9 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Made available in DSpace on 2014-11-17T15:10:55Z (GMT). No. of bitstreams: 2 Tese Geiziane Tessarolo - 2014.pdf: 5275889 bytes, checksum: fb092b496eb6eae85e89c28d423c44d9 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2014-04-29 Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES Aim Species Distribution Models (SDM) can be used to predict the location of unknown populations from known species occurrences. It follows that how the data used to calibrate the models are collected can have a great impact on prediction success. We evaluated the influence of different survey designs and their interaction with the modelling technique on SDM performance. Location Iberian Peninsula Methods We examine how data recorded using seven alternative survey designs (random, systematic, environmentally stratified by class and environmentally stratified using p-median, biased due to accessibility, biased by human density aggregation and biased towards protected areas) could affect SDM predictions generated with nine modelling techniques (BIOCLIM, Gower distance, Mahalanobis distance, Euclidean distance, GLM, MaxEnt, ENFA and Random Forest). We also study how sample size, species’ characteristics and modelling technique affected SDM predictive ability, using six evaluation metrics. Results Survey design has a small effect on prediction success. Characteristics of species’ ranges rank highest among the factors affecting SDM results: the species with lower relative occurrence area (ROA) are predicted better. Model predictions are also improved when sample size is large. Main conclusions The species modelled – particularly the extent of its distribution – are the largest source of influence over SDM results. The environmental coverage of the surveys is more important than the spatial structure of the calibration data. Therefore, climatic biases in the data should be identified to avoid erroneous conclusions about the geographic patterns of species distributions. |
Databáze: | Networked Digital Library of Theses & Dissertations |
Externí odkaz: |