Modelagem matem?tica de controle ?timo para vacina??o contra a gripe H1N1
Autor: | Souza, Pablo Amauri Carvalho de Ara?jo e |
---|---|
Jazyk: | portugalština |
Rok vydání: | 2016 |
Předmět: | |
Zdroj: | Biblioteca Digital de Teses e Dissertações da UFRRJUniversidade Federal Rural do Rio de JaneiroUFRRJ. |
Druh dokumentu: | masterThesis |
Popis: | Submitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2017-05-19T12:03:19Z No. of bitstreams: 1 2016 - Pablo Amauri Carvalho de Ara?jo e Souza.pdf: 3429164 bytes, checksum: c1da6eb8bb41fc96de0b7e5ca2a9570f (MD5) Made available in DSpace on 2017-05-19T12:03:19Z (GMT). No. of bitstreams: 1 2016 - Pablo Amauri Carvalho de Ara?jo e Souza.pdf: 3429164 bytes, checksum: c1da6eb8bb41fc96de0b7e5ca2a9570f (MD5) Previous issue date: 2016-06-13 Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior - CAPES This work highlights the importance of well administrated vaccination as prophylactic activity, making it a key element of mathematical modeling about the spreading of an infection by Influenza H1N1 virus in a human population. The model counts with Optimal Control theory to achieve a vaccination strategy that balance infection?s prevention and your own cost in a hypothetical population exposed to a virus. The numerical solutions of ordinary differential equations systems generated by model is given via Finite Difference Method, that reveals the populational dynamics during the time while the vaccine is distributed, in various different situations of virus exposition and vaccination cost. Este trabalho ressalta a import?ncia da vacina??o bem administrada como atividade profil?tica, tornando-a elemento chave da modelagem matem?tica do espalhamento da infec??o pelo v?rus Influenza H1N1 em uma popula??o humana. O modelo conta com a teoria de Controle ?timo para alcan?ar uma estrat?gia de vacina??o, que equilibre a preven??o da infec??o e seu pr?prio custo em uma popula??o hipot?tica exposta ao v?rus. As solu??es num?ricas dos sistemas de equa??es diferenciais ordin?rias gerados pelo modelo ficam a cargo do M?todo das Diferen?as Finitas, revelando a din?mica populacional no per?odo de tempo em que a vacina ? distribu?da, em distintas situa??es de exposi??o ao v?rus e custo da vacina??o. |
Databáze: | Networked Digital Library of Theses & Dissertations |
Externí odkaz: |