Uso de modelos de regressão aleatória na análise de dados longitudinais no melhoramento genético vegetal

Autor: Araújo, Simone Inoe
Jazyk: portugalština
Rok vydání: 2005
Předmět:
Zdroj: Repositório Institucional da UFVUniversidade Federal de ViçosaUFV.
Druh dokumentu: Doctoral Thesis
Popis: Submitted by Marco Antônio de Ramos Chagas (mchagas@ufv.br) on 2017-06-05T18:48:36Z No. of bitstreams: 1 texto completo.pdf: 607753 bytes, checksum: 6c910f242adb58351c752e924cd83694 (MD5)
Made available in DSpace on 2017-06-05T18:48:36Z (GMT). No. of bitstreams: 1 texto completo.pdf: 607753 bytes, checksum: 6c910f242adb58351c752e924cd83694 (MD5) Previous issue date: 2005-05-20
Fundação de Amparo a Pesquisa do Estado de Minas Gerais
Os objetivos deste estudo foram analisar, via simulação de dados, o efeito de diferentes pressuposições quanto à variância dos efeitos ambientais, frente a dados com determinada estrutura de variâncias, e verificar o comportamento de diferentes estratégias de análise frente ao desbalanceamento dos dados. Foram simulados dados referentes a um teste de progênie, do cruzamento de 30 progenitores masculinos com três genitores femininos diferentes cada um, onde cada cruzamento deu origem a dez indivíduos, distribuídos em três locais diferentes. O efeito fixo de local foi gerado de forma a não apresentar diferenças estatísticas significativas. Para cada indivíduo da prole foram geradas informações fenotípicas em cinco idades diferentes. Portanto, o arquivo de dados consistiu de 1020 indivíduos no total, sendo que 900 indivíduos apresentaram registros nas cinco idades, totalizando 4500 registros de produção. Para estudar o efeito da heterogeneidade das variâncias ambientais, em modelos de regressão aleatória adotou-se, modelos que ajustaram uma função polinomial de segundo grau para o efeito genético aditivo e de ambiente permanente e que ajustaram uma função polinomial apenas para o efeito genético aditivo foram analisados, considerando-se ou não a heterogeneidade da variância do efeito de ambiente temporário, gerando-se assim, quatro diferentes modelos de regressão aleatória. Além disso, os modelos de regressão aleatória, repetibilidade e multi-característica foram avaliados sob diferentes níveis de desbalanceamento dos dados. O modelo de regressão aleatória mais adequado foi aquele que considerou a heterogeneidade de variâncias dos efeitos de ambiente permanente e temporário. Assumir pressuposições incorretas sobre a estrutura de covariância dos efeitos aleatórios do modelo conduziu à alterações nas estimativas de componentes de covariância e nas estimativas dos parâmetros genéticos. Sob desbalanceamento sem seleção, todos os modelos apresentaram estimativas de herdabilidade bastante semelhantes aos resultados obtidos quando se considerou o conjunto de dados completos. Entretanto, quando se considerou o efeito da seleção, modelos de regressão aleatória com até 10% de desbalanceamento não promoveram alterações nas estimativas de componentes de variância.
The aim of this study was to analyze the effect of assuming different assumptions about environmental variance effects to data with certain variance structure, and verify genetic parameters estimates in different analysis strategies behind unbalanced data. A progeny test data was simulated, by crossing 30 male with three different female, where each crossing originated ten individuals, distributed in three different places. The fixed effect of place was generated in order not to present significant statistical difference. For each individual offspring, phenotypic information were generated in five different ages. Then, the data consisted in a total of 1020 individuals, in what 900 of them presented information in the five ages, computing 4500 observations of production. To verify the importance of consider or not the environmental heterogeneity of variance, in random regression models, models that adjusted a second polynomial function both for the additive genetic as for the permanent environmental effect and adjusted a polynomial function only for the additive genetic effect were analyzed, considering or not the variance heterogeneity of the temporary environmental effect, then generating four different random regression models. Moreover, the single-trait random regression model, the repeatability model and the multiple-trait model were analyzed on different lost of information levels. The most adequate random regression model was the one who considered both, the variance heterogeneity of permanent environmental effect, and the temporary environmental effect. Assuming the incorrect assumptions about the covariance structure of random effects of the model, conducted to change in the covariance components estimates and in the genetic ixparameters estimates. With incomplete data, without selection, all the models presented heritability estimates very similar to the results when complete data were considered. However, when effect of selection was considered, random regression models with less or equal to 10% of lost of information didn’t conduct to change in the covariance components estimates.
Databáze: Networked Digital Library of Theses & Dissertations