Um algoritmo de busca linear para otimização irrestrita

Autor: Silva, Daniele Alencar Fabrício da
Jazyk: portugalština
Rok vydání: 2016
Předmět:
Zdroj: Biblioteca Digital de Teses e Dissertações da UFAMUniversidade Federal do AmazonasUFAM.
Druh dokumentu: masterThesis
Popis: Submitted by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2018-03-02T15:54:49Z No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Dissertação_Daniele A. F. Silva.pdf: 1378175 bytes, checksum: 8dfe0d31351466e795bb26e262eb8780 (MD5)
Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2018-03-02T15:55:00Z (GMT) No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Dissertação_Daniele A. F. Silva.pdf: 1378175 bytes, checksum: 8dfe0d31351466e795bb26e262eb8780 (MD5)
Made available in DSpace on 2018-03-02T15:55:00Z (GMT). No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Dissertação_Daniele A. F. Silva.pdf: 1378175 bytes, checksum: 8dfe0d31351466e795bb26e262eb8780 (MD5) Previous issue date: 2016-11-04
CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
This work presents a linear search algorithm for unconstrained optimization problems proposed by Gonglin Yuan, Sha Lu Wei and Zengxi [1], called here by Algorithm GSZ. This algorithm is designed from the perspective of inheriting the simplicity and low computational cost of the conjugate gradient method. n this context, a detailed proof of the global convergence analysis for functions not necessarily convex is presented. We also emphasize the achievement of the linear convergence rate for the case where the function is strongly Convex.
Neste trabalho apresentamos um algoritmo de busca linear para problemas de otimização irrestrita proposto por Gonglin Yuan, Sha Lu e Zengxi Wei [1], denominado aqui por Algoritmo GSZ. Este algoritimo é concebido sob a perspectiva de herdar a simplicidade e o baixo custo computacional do método do gradiente conjugado. Neste contexto, uma prova detalhada da análise de convergência global para funções não necessariamente convexas é apresentada. Ressaltamos ainda a obtenção da taxa de convergência linear para o caso em que a função é fortemente convexa.
Databáze: Networked Digital Library of Theses & Dissertations