A machine learning approach to dengue forecasting: comparing LSTM, Random Forest and Lasso

Autor: Mussumeci, Elisa
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Repositório Institucional do FGVFundação Getulio VargasFGV.
Druh dokumentu: masterThesis
Popis: Submitted by Elisa Mussumeci (elisamussumeci@gmail.com) on 2018-05-29T18:53:58Z No. of bitstreams: 1 machine-learning-aproach (4).pdf: 11272802 bytes, checksum: 52b25abf2711fdd6d1a338316c15c154 (MD5)
Approved for entry into archive by ÁUREA CORRÊA DA FONSECA CORRÊA DA FONSECA (aurea.fonseca@fgv.br) on 2018-05-29T19:15:35Z (GMT) No. of bitstreams: 1 machine-learning-aproach (4).pdf: 11272802 bytes, checksum: 52b25abf2711fdd6d1a338316c15c154 (MD5)
Made available in DSpace on 2018-06-14T19:45:29Z (GMT). No. of bitstreams: 1 machine-learning-aproach (4).pdf: 11272802 bytes, checksum: 52b25abf2711fdd6d1a338316c15c154 (MD5) Previous issue date: 2018-04-12
We used the Infodengue database of incidence and weather time-series, to train predictive models for the weekly number of cases of dengue in 790 cities of Brazil. To overcome a limitation in the length of time-series available to train the model, we proposed using the time series of epidemiologically similar cities as predictors for the incidence of each city. As Machine Learning-based forecasting models have been used in recent years with reasonable success, in this work we compare three machine learning models: Random Forest, lasso and Long-short term memory neural network in their forecasting performance for all cities monitored by the Infodengue Project.
Databáze: Networked Digital Library of Theses & Dissertations