UNCERTAINTY ANALYSIS OF 2D VECTOR FIELDS THROUGH THE HELMHOLTZ-HODGE DECOMPOSITION

Autor: PAULA CECCON RIBEIRO
Jazyk: angličtina
Rok vydání: 2016
Zdroj: Repositório Institucional da PUC_RIOPontifícia Universidade Católica do Rio de JaneiroPUC_RIO.
Druh dokumentu: Doctoral Thesis
Popis: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO
COORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
PROGRAMA DE EXCELENCIA ACADEMICA
PROGRAMA DE DOUTORADO SANDUÍCHE NO EXTERIOR
Campos vetoriais representam um papel principal em diversas aplicações científicas. Eles são comumente gerados via simulações computacionais. Essas simulações podem ser um processo custoso, dado que em muitas vezes elas requerem alto tempo computacional. Quando pesquisadores desejam quantificar a incerteza relacionada a esse tipo de aplicação, costuma-se gerar um conjunto de realizações de campos vetoriais, o que torna o processo ainda mais custoso. A Decomposição de Helmholtz-Hodge é uma ferramenta útil para a interpretação de campos vetoriais uma vez que ela distingue componentes conservativos (livre de rotação) de componentes que preservam massa (livre de divergente). No presente trabalho, vamos explorar a aplicabilidade de tal técnica na análise de incerteza de campos vetoriais 2D. Primeiramente, apresentaremos uma abordagem utilizando a Decomposição de Helmholtz-Hodge como uma ferramenta básica na análise de conjuntos de campos vetoriais. Dado um conjunto de campos vetoriais epsilon, obtemos os conjuntos formados pelos componentes livre de rotação, livre de divergente e harmônico, aplicando a Decomposição Natural de Helmholtz- Hodge em cada campo vetorial em epsilon. Com esses conjuntos em mãos, nossa proposta não somente quantifica, por meio de análise estatística, como cada componente é pontualmente correlacionado ao conjunto de campos vetoriais original, como também permite a investigação independente da incerteza relacionado aos campos livre de rotação, livre de divergente e harmônico. Em sequência, propomos duas técnicas que em conjunto com a Decomposição de Helmholtz-Hodge geram, de forma estocástica, campos vetoriais a partir de uma única realização. Por fim, propomos também um método para sintetizar campos vetoriais a partir de um conjunto, utilizando técnicas de Redução de Dimensionalidade e Projeção Inversa. Testamos os métodos propostos tanto em campos sintéticos quanto em campos numericamente simulados.
Vector field plays an essential role in a large range of scientific applications. They are commonly generated through computer simulations. Such simulations may be a costly process because they usually require high computational time. When researchers want to quantify the uncertainty in such kind of applications, usually an ensemble of vector fields realizations are generated, making the process much more expensive. The Helmholtz-Hodge Decomposition is a very useful instrument for vector field interpretation because it traditionally distinguishes conservative (rotational-free) components from mass-preserving (divergence-free) components. In this work, we are going to explore the applicability of such technique on the uncertainty analysis of 2-dimensional vector fields. First, we will present an approach of the use of the Helmholtz-Hodge Decomposition as a basic tool for the analysis of a vector field ensemble. Given a vector field ensemble epsilon, we firstly obtain the corresponding rotational-free, divergence-free and harmonic component ensembles by applying the Natural Helmholtz-Hodge Decomposition to each1 vector field in epsilon. With these ensembles in hand, our proposal not only quantifies, via a statistical analysis, how much each component ensemble is point-wisely correlated to the original vector field ensemble, but it also allows to investigate the uncertainty of rotational-free, divergence-free and harmonic components separately. Then, we propose two techniques that jointly with the Helmholtz-Hodge Decomposition stochastically generate vector fields from a single realization. Finally, we propose a method to synthesize vector fields from an ensemble, using both the Dimension Reduction and Inverse Projection techniques. We test the proposed methods with synthetic vector fields as well as with simulated vector fields.
Databáze: Networked Digital Library of Theses & Dissertations