FORECASTING PROBABILISTIC DENSITY DISTRIBUTION OF WIND POWER GENERATION USING NON-PARAMETRIC TECHNIQUES

Autor: SORAIDA AGUILAR VARGAS
Jazyk: portugalština
Rok vydání: 2015
Zdroj: Repositório Institucional da PUC_RIOPontifícia Universidade Católica do Rio de JaneiroPUC_RIO.
Druh dokumentu: Doctoral Thesis
Popis: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO
COORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
Como resultado do processo de contração de novos Leilões de energia eólica e a entrada em operação de novos parques eólicos ao sistema elétrico Brasileiro, é necessário que o planejamento da operação das atividades de curto prazo como a regulação, atendimento da carga, balanceamento e programação do despacho das unidades geradoras entre outras atividades, seja efetuado de tal que os riscos técnicos e financeiros sejam minimizados. Porém esta não é uma tarefa simples, já que fornecer previsões exatas para esse processo apresenta uma série de desafios, como a incorporação da incerteza no cálculo das previsões. Daqui que a literatura técnica reporta diversas técnicas que proporcionam estimativas da densidade de probabilidade de geração de energia eólica, pois tais estimações permitem obter previsões da densidade de probabilidade para a energia eólica. Neste contexto, a previsão da velocidade do vento nos aproveitamentos eólicos passa a ser uma informação fundamental para os modelos de apoio à decisão que suportam a operação econômica e segura dos sistemas elétricos, pois a maioria dos modelos precisa da previsão da velocidade do vento para calcular a previsão da energia eólica. Este trabalho apresenta uma proposta uma estratégia de especificação não paramétrica para a previsão da geração de energia eólica, empregando a comumente conhecida densidade condicional por kernel, o qual permite calcular a função densidade de probabilidade da produção eólica para qualquer horizonte de tempo, condicionada à previsão da velocidade do vento obtida através da aplicação da metodologia de Análise Espectral Singular (SSA) para previsão. A metodologia foi validada com sucesso usando a série temporal das medias horárias da velocidade do vento e da produção eólica de um parque eólico Brasileiro. Os resultados foram comparados contra outras metodologias para a previsão da velocidade do vento, onde a abordagem não paramétrica proposta produz resultados muito proeminentes.
As a result of the new contracting process wind power auctions and the entrance into operation of new wind farms to the Brazilian electrical system, it is requires that the planning of the operation of short-term activities such as regulation, balancing and programming dispatch of units commitment among other activities, is made such that the technical and financial risks are minimized. But this is not a simple task, since providing accurate forecasts for this process presents several challenges, as the incorporation of uncertainty in the calculation of the forecasts. Hence the technical literature reports several techniques that provide estimates of the probability of wind power generation density, because such estimates allow to obtain forecasts of the wind power probability density function. In this context, wind speed forecasting in wind farms becomes essential information for decision support models which helps the economic and safe operation of electrical systems, due to the fact that most of the models need to the wind speed predictions for forecasting wind energy. This thesis proposes a non-parametric specification strategy for forecasting of wind power generation, using the commonly known conditional kernel density estimation, which allows the estimation of the probability density function of wind power generation for any time horizon, conditioned on wind speed forecast obtained by applying the Singular Spectrum Analysis methodology (SSA). The methodology has been successfully validated using the time series of wind speed and hourly averages of wind production of a Brazilian wind farm. The results were compared against other methodologies for wind speed prediction, and the proposed non-parametric approach produced very prominent results.
Databáze: Networked Digital Library of Theses & Dissertations