A SPATIO-TEMPORAL MODEL FOR AVERAGE SPEED PREDICTION ON ROADS

Autor: PEDRO HENRIQUE FONSECA DA SILVA DINIZ
Jazyk: angličtina
Rok vydání: 2015
Zdroj: Repositório Institucional da PUC_RIOPontifícia Universidade Católica do Rio de JaneiroPUC_RIO.
Druh dokumentu: masterThesis
Popis: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO
COORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
PROGRAMA DE EXCELENCIA ACADEMICA
Muitos fatores podem in uenciar a velocidade de um veículo numa rodovia ou estrada, mas dois deles são observados diariamente pelos motoristas: sua localização e o momento do dia. Obter modelos que retornem a velocidade média como uma função do espaço e do tempo é ainda uma tarefa desafiadora. São muitas as aplicações para esses tipos de modelos, como por exemplo: tempo estimado de chegada, caminho mais curto e previsão de tráfico, deteccção de acidente, entre outros. Este estudo propõe um modelo de previsão baseado em uma média espaço-temporal da velocidade média/instantânea coletada de dados históricos de GPS. A grande vantagem do modelo proposto é a sua simplicidade. Além disso, os resultados experimentais obtidos de caminhões de entrega de combustíveis, por todo o ano de 2013 no Brasil, indicaram que a maioria das observações podem ser preditas usando esse modelo dentro de uma tolerância de erro aceitável.
Many factors may inuence a vehicle speed in a road, but two of them are usually observed by many drivers: its location and the time of the day. To obtain a model that returns the average speed as a function of position and time is still a challenging task. The application of such models can be in different scenarios, such as: estimated time of arrival, shortest route paths, traffic prediction, and accident detection, just to cite a few. This study proposes a prediction model based on a spatio-temporal partition and mean/instantaneous speeds collected from historic GPS data. The main advantage of the proposed model is that it is very simple to compute. Moreover, experimental results obtained from fuel delivery trucks, along the whole year of 2013 in Brazil, indicate that most of the observations can be predicted using this model within an acceptable error tolerance.
Databáze: Networked Digital Library of Theses & Dissertations