MINIMAL SURFACES IN R3

Autor: FELIPE DE ALBUQUERQUE MELLO PEREIRA
Jazyk: portugalština
Rok vydání: 2013
Zdroj: Repositório Institucional da PUC_RIOPontifícia Universidade Católica do Rio de JaneiroPUC_RIO.
Druh dokumentu: masterThesis
Popis: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO
COORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
FUNDAÇÃO DE APOIO À PESQUISA DO ESTADO DO RIO DE JANEIRO
PROGRAMA DE SUPORTE À PÓS-GRADUAÇÃO DE INSTS. DE ENSINO
Neste trabalho estudamos a teoria clássica das superfícies mínimas em R3, focando na representação de Enneper-Weierstrass e suas consequências. São exibidos vários exemplos, incluindo as superfícies de Jorge-Meeks e de Jorge-Xavier. Também mostramos princípios do máximo para superfícies mínimas e várias aplicações como, por exemplo, o teorema do semi-espaço. Em seguida, nos concentramos na teoria das superfícies mínimas completas de curvatura total finita e, com esta, podemos analisar o desenvolvimento assintótico de fins mínimos completos mergulhados de curvatura total finita. Por fim, a dissertação culmina com o teorema de Schoen, que afirma que as únicas superfícies mínimas completas, conexas, de curvatura total finita e apenas dois fins - ambos mergulhados - são um par de planos e o catenoide.
In this work we study the classical theory of minimal surfaces in R3, with special focus on the Enneper-Weierstrass representation and its consequences. We exhibit many examples, including the Jorge-Meeks and Jorge-Xavier surfaces. We also show maximum principles for minimal surfaces and many applications as, for instance, the half-space theorem. Afterwards, we focus on the theory of complete minimal surfaces with finite total curvature, with which we can analyse the asymptotic development of complete minimal embedded ends with finite total curvature. This dissertation culminates with the Schoen s theorem, which states that the only complete, connected minimal surfaces with finite total curvature and exactly two ends - both embedded - are a pair of planes or a catenoid.
Databáze: Networked Digital Library of Theses & Dissertations