STUDY OF STOCHASTIC MIXING MODELS FOR COMBUSTION IN TURBULENT FLOWS

Autor: ELDER MARINO MENDOZA ORBEGOSO
Jazyk: portugalština
Rok vydání: 2007
Zdroj: Repositório Institucional da PUC_RIOPontifícia Universidade Católica do Rio de JaneiroPUC_RIO.
Druh dokumentu: masterThesis
Popis: COORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
O presente trabalho tem como finalidade avaliar os diferentes modelos de mistura para o cálculo da combustão de reagentes pré- misturados utilizando a abordagem de Reator Parcialmente Misturado (PaSR). Os modelos de mistura considerados neste trabalho foram os modelos IEM estendido, Langevin e Langevin estendido. Investiga-se aqui o grau de mistura previsto por tais modelos e sua influência sobre as propriedades termoquímicas em um processo de combustão. A primeira parte deste trabalho consiste na apresentação e avaliação destes modelos de mistura, considerando-se um campo escalar inerte em presença de um campo turbulento homogêneo e isotrópico. Uma vez que estes modelos de mistura envolvem formulações do tipo estocástico, sua implementação foi realizada utilizando o método de Monte Carlo, mediante a utilização de esquemas numéricos adequados à resolução de equações diferenciais estocásticas. Assim, estuda-se a evolução da Função Densidade de Probabilidade (PDF) e das principais propriedades do campo escalar para cada modelo implementado. Os resultados obtidos também são comparados com simulação numérica direta e com resultados analáticos disponsáveis. Um ótimo acordo em termos qualitativos e quantitativos é obtido. A segunda parte deste trabalho utiliza estes modelos para o estudo numérico de um PaSR no qual são modelados os processos difusivos e reativos presentes durante a combustão. O PaSR é usado para avaliar a influência dos modelos de mistura nas propriedades termoquímicas da mistura em uma situação de combustão de tipo pré-misturada, que é modelada utilizando-se uma variável de progresso de uma reação. Os resultados obtidos com os diferentes modelos de mistura são comparados para diferentes regimes de funcionamento do PaSR, mostrando que, em situações de mistura rápida e reação intensa, os diferentes modelos apresentam resultados similares. Porém, nos casos de mistura lenta e reação moderada, discrepancias importantes são observadas entre os resultados dos modelos; as quais atingem até 65% para o valor médio da variável de progresso da reação.
The present work evaluates several mixing models for the prediction of premixed combustion in a Partially Stirred Reactor (PaSR). The models considered in this work were the extended IEM, Langevin and extended Langevin models. The degree of mixing and its influence on the termochemical properties in a combustion process are investigated here. The first part of this work consists on the presentation and the assesment of these mixing models in which a single scalar field was considered in presence of a homogeneous and isotropic turbulent field. Since these mixing models involve stochastic terms, their implementation is performed by the Monte Carlo method using numerical schemes which solve the corresponding Stochastic Differential Equations (SDE). The evolution of the Probability Density Function (PDF) and the main properties for a single scalar field are studied for each mixing model. The numerical results are compared with Direct Numerical Simulation and available analytical results. Excellent qualitative and quantitative agreements are obtained. In the second part of this work, mixing models are used for numerical simulation of a PaSR where the diffusive and reactive processes occur. The PaSR is used to assess the mixing model influence on the termochemical properties of the mixture in a premixed combustion process, which is modeled using a reaction progress variable. The results obtained with the different mixing models are compared in several operating regimes of the PaSR, showing that when mixing is fast and reaction is intense, the different models lead to similar results. However, when mixing is slow and reaction is weak, important discrepancies are observed between the model results, which reach 65%, as far as the averaged reaction progress variable is concerned
Databáze: Networked Digital Library of Theses & Dissertations