Reaction Kinetics under Anomalous Diffusion
Autor: | Frömberg, Daniela |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2011 |
Předmět: | |
Druh dokumentu: | Doctoral Thesis |
DOI: | 10.18452/16374 |
Popis: | Die vorliegende Arbeit befasst sich mit der Verallgemeinerung von Reaktions-Diffusions-Systemen auf Subdiffusion. Die subdiffusive Dynamik auf mesoskopischer Skala wurde mittels Continuous-Time Random Walks mit breiten Wartezeitverteilungen modelliert. Die Reaktion findet auf mikroskopischer Skala, d.h. während der Wartezeiten, statt und unterliegt dem Massenwirkungsgesetz. Die resultierenden Integro-Differentialgleichungen weisen im Integralkern des Transportterms eine Abhängigkeit von der Reaktion auf. Im Falle der Degradation A->0 wurde ein allgemeiner Ausdruck für die Lösungen beliebiger Dirichlet-Randwertprobleme hergeleitet. Die Annahme, dass die Reaktion dem Massenwirkungsgesetz unterliegt, ist eine entscheidende Voraussetzung für die Existenz stationärer Profile unter Subdiffusion. Eine nichtlineare Reaktion stellt die irreversible autokatalytische Reaktion A+B->2A unter Subdiffusion dar. Es wurde ein Analogon zur Fisher-Kolmogorov-Petrovskii-Piscounov-Gleichung (FKPP) aufgestellt und die resultierenden propagierenden Fronten untersucht. Numerische Simulationen legten die Existenz zweier Regimes nahe, die sowohl mittels eines Crossover-Argumentes als auch durch analytische Berechnungen untersucht wurden. Das erste Regime ist charakterisiert durch eine Front, deren Breite und Geschwindigkeit sich mit der Zeit verringert. Das zweite, fluktuationsdominierte Regime liegt nicht im Geltungsbereich der kontinuierlichen Gleichung und weist eine stärkere Abnahme der Frontgeschwindigkeit sowie eine atomar scharf definierte Front auf. Ein anderes Szenario, bei dem eine Spezies A in ein mit immobilen B-Partikeln besetztes Medium hineindiffundiert und gemäß dem Schema A+B->(inert) reagiert, wurde ebenfalls betrachtet. Diese Anordnung wurde näherungsweise als ein Randwertproblem mit einem beweglichen Rand (Stefan-Problem) formuliert. Die analytisch gewonnenen Ergebnisse bzgl. der Position des beweglichen Randes wurden durch numerische Simulationen untermauert. The present work studies the generalization of reaction-diffusion schemes to subdiffusion. The subdiffusive dynamics was modelled by means of continuous-time random walks on a mesoscopic scale with a heavy-tailed waiting time pdf lacking the first moment. The reaction was assumed to take place on a microscopic scale, i.e. during the waiting times, obeying the mass action law. The resultant equations are of integro-differential form, and the reaction explicitly affects the transport term. The long ranged memory of the subdiffusion kernel is modified by a factor accounting for the reaction of particles during the waiting times. The degradation A->0 was considered and a general expression for the solution to arbitrary Dirichlet Boundary Value Problems was derived. For stationary solutions to exist in reaction-subdiffusion, the assumption of reactions according to classical rate kinetics is essential. As an example for a nonlinear reaction-subdiffusion system, the irreversible autocatalytic reaction A+B->2A under subdiffusion is considered. A subdiffusive analogue of the classical Fisher-Kolmogorov-Petrovskii-Piscounov (FKPP) equation was derived and the resultant propagating fronts were studied. Two different regimes were detected in numerical simulations, and were discussed using both crossover arguments and analytic calculations. The first regime is characterized by a decaying front velocity and width. The fluctuation dominated regime is not within the scope of the continuous description. The velocity of the front decays faster in time than in the continuous regime, and the front is atomically sharp. Another setup where reactants A penetrate a medium initially filled with immobile reactants B and react according to the scheme A+B->(inert) was also considered. This problem was approximately described in terms of a moving boundary problem (Stefan-problem). The theoretical predictions concerning the moving boundary were corroborated by numerical simulations. |
Databáze: | Networked Digital Library of Theses & Dissertations |
Externí odkaz: |