Entwurf und Verifikation des Wärmenetzmodells eines explosionsgeschützten Niederspannungs-Energieverteilers zur thermischen Dimensionierung durch Berechnung

Autor: Heger, Julian
Jazyk: němčina
Rok vydání: 2022
Předmět:
Druh dokumentu: Text<br />Doctoral Thesis
Popis: Explosionsgeschützte Niederspannungs-Schaltgerätekombinationen, häufig auch als explosionsgeschützte Energieverteiler bezeichnet, werden eingesetzt, um in explosionsfähigen Atmosphären elektrische Energie sicher zu übertragen und zu verteilen. Um einen über Jahrzehnte sicheren Betrieb zu gewährleisten sind die Energieverteiler mindestens derart thermisch zu dimensionieren, dass normativ festgelegte Grenztemperaturen nicht überschritten werden. Explosionsgeschützte Energieverteiler unterscheiden sich von konventionellen Schaltgerätekombinationen. Wegen des Explosionsschutzes sind verschiedene Schalt- und Schutzgeräte zusätzlich in druckfeste Kapselungen eingebaut. Die Reihenmontage druckfest gekapselter Geräte erfolgt mit Abstand. Das Verdrahten der Geräte und Betriebsmittel erfolgt vielfach mit Leitungen mit wärmebeständiger Isolierung. Die Leitungen sind häufig in Bündeln gelegt. Die Verteilergehäuse besitzen keine Lüftungsöffnungen. Für den Explosionsschutz sind zusätzlich alle höchsten Oberflächentemperaturen maßgeblich, die mit zündfähiger Atmosphäre in Kontakt kommen können (Hotspots). Die Hotspot-Temperaturen dürfen normativ festgelegte Grenztemperaturen nicht überschreiten. Die Wärmenetzmethode ist ein etabliertes Verfahren, um die Erwärmung konventioneller Schaltgeräte und Schaltgerätekombinationen effizient zu berechnen. Die Erwärmung explosionsgeschützter Energieverteiler einschließlich der Hotspots konnte bisher nicht mit der Wärmenetzmethode berechnet werden. In dieser Arbeit werden die dominanten Wärmequellen und Wärmeübertragungsvorgänge anhand eines typischen explosionsgeschützten Energieverteilers experimentell sowie mit Hilfe numerischer Methoden (Finite-Elemente-Methode, Finite-Volumen-Methode) untersucht. Auf Grundlage der Untersuchungsergebnisse werden Berechnungsmodelle für die Erwärmung von Leitungsbündeln und für die Geschwindigkeit umlaufender Kühlmittelströme erarbeitet und in die Wärmenetzmethode implementiert. Um die Hotspot-Temperaturen auf druckfesten Kapselungen zu berechnen sind erstmals fein aufgelöste Wärmenetze erforderlich. Es wird ein Verfahren zum strukturierten Aufbau fein aufgelöster Wärmenetze erarbeitet. Ein einfacher Ansatz zum Berechnen der Erwärmung ebener Kontakte wird in dieser Arbeit auf gewölbte Schaltkontakte erweitert, indem die erforderliche scheinbare Kontaktfläche zwischen den Kontaktgliedern erstmals aus Messungen mit Druckmessfolien bestimmt wird. Für die Betriebsmittel des explosionsgeschützten Energieverteilers werden die Wärmenetze aufgebaut, parametriert und experimentell verifiziert. Das Gesamtwärmenetz der Musteranlage wird durch das Zusammenschalten der Wärmenetze der Betriebsmittel aufgebaut und experimentell verifiziert. Die mit dem verifizierten Gesamtwärmenetz berechneten Temperaturen werden mit gemessenen Temperaturen bei 100 % Bemessungsstrom verglichen. Die Berechnung zeigt eine hohe Übereinstimmung mit den gemessenen Temperaturen. Die höchsten noch verbleibenden Abweichungen zur gemessenen Übertemperatur betragen ΔΘ = +6,3 K und ΔΘ = -6,2 K. Die berechneten Orte der Heißpunkte stimmen mit der Messung überein. Die berechneten Heißpunkttemperaturen unterscheiden sich um maximal +3 K von den gemessenen Heißpunkttemperaturen. Das verifizierte Gesamtwärmenetz berechnet alle für die Erwärmungsnachweise erforderlichen Temperaturen unter den geforderten Normbedingungen. Bei der normativ geforderten Belastung von 110 % des Bemessungsstroms werden die für den Explosionsschutz maßgeblichen Heißpunkte seitlich auf den druckfesten Kapselungen zweier Schutzschalter berechnet und betragen ϑFZ2 Ob max = 101,6 °C sowie ϑFZ8 Ob max = 101,8 °C. Sowohl für die Erwärmungsnachweise als für das thermische Dimensionieren können mit dem Wärmenetz außerdem Temperaturen an Stellen berechnet werden, die experimentell nur schwer gemessen werden können (z. B. im Bündelzentrum oder im Inneren der druckfesten Kapselungen). Mit dem verifizierten Gesamtwärmenetz werden Fragestellungen zur thermischen Dimensionierung des explosionsgeschützten Energieverteilers rechnerisch beantwortet. So lässt sich u. a. ermitteln, dass der zulässige Bemessungsbelastungsfaktor abhängig von der äußeren Oberflächenbeschaffung des Verteilergehäuses zwischen RDF = 0,55 (innen lackiert, außen hochglanzpoliert) und RDF = 0,78 (innen lackiert, außen lackiert) variiert. Das verifizierte Gesamtwärmenetz ist daher ein geeignetes Werkzeug, um die thermische Dimensionierung zielgerichtet und effizient mittels Erwärmungsberechnung zu unterstützen.:1 Einleitung 1 2 Erkenntnisstand zur Erwärmung von Niederspannungs-Energieverteilern 3 2.1 Wärmequellen 3 2.2 Wärmeübertragung 9 2.3 Erwärmungsberechnung mit der Wärmenetzmethode 19 2.4 Messen von Oberflächentemperaturen 23 2.5 Grenztemperaturen – Rechtliche und normative Vorgaben 25 3 Musteranlage 34 3.1 Aufbau 34 3.2 Hauptwärmequellen 38 4 Präzisieren der Aufgabenstellung 42 5 Untersuchungen zur Temperaturmessung auf druckfesten Kapselungen 45 5.1 Problemstellung 45 5.2 Analyse der Wärmeströme 46 5.3 Untersuchte Montagekonstruktionen 48 5.4 Versuchsaufbau und -durchführung 49 5.5 Ergebnisse 52 5.6 Angepasste Montagetechnik für druckfeste Kapselungen 55 6 Untersuchungen zur Erwärmung der Betriebsmittel 57 6.1 Explosionsgeschützter Fehlerstrom-Schutzschalter mit Überstromauslöser 57 6.2 Explosionsgeschützter Last- und Motorschalter 74 7 Untersuchungen zur gegenseitigen thermischen Beeinflussung der Betriebsmittel 93 7.1 Erwärmung der Leitungsbündel 93 7.2 Zirkulierender Kühlmittelstrom 111 8 Modellbildung 120 8.1 Strukturierter Aufbau – Verfahren 120 8.2 Wärmenetzmodelle 121 9 Verifikation des Wärmenetzmodells der Musteranlage 133 9.1 Versuchsaufbau 133 9.2 Parameterabgleich 138 9.3 Vergleich der Temperaturen 140 10 Anwendung 150 10.1 Erwärmungsnachweise durch Berechnung 150 10.2 Thermische Dimensionierung durch Berechnung 160 11 Zusammenfassung 166 12 Ausblick 170
Explosion-proof low-voltage switchgear and controlgear assemblies transmit and distribute electrical energy in potentially explosive atmospheres. To ensure safe operation over decades, the assemblies must be thermally dimensioned at least in such a way that normatively defined limit temperatures are not exceeded. Explosion-proof switchgear and controlgear assemblies vary from conventional switchgear assemblies. Because of the explosion protection, electrical devices are installed in flameproof enclosures. The row installation of flameproof enclosed devices is carried out with spacing between each device. The wiring of the devices is often done with cables with heat-resistant insulation. These cables are mainly laid in bundles. The explosion-proof switchgear and controlgear assemblies do not have ventilation openings for additional cooling. For explosion protection, all the highest surface temperatures (hot spots) that could come into contact with ignitable atmosphere are also relevant. The hotspot temperatures must not exceed normatively defined limit temperatures. The Thermal Network Method is an established approach for efficiently calculating the temperature-rise of conventional switchgear and controlgear assemblies. So far, the temperature-rise of explosion-proof switchgear and controlgear assemblies including hot spots could not be calculated with the Thermal Network Method. In this work, the dominant heat sources and heat transfer processes are investigated for of a typical explosion-proof switchgear assembly. Investigation is carried out experimentally as well as by means of numerical methods (Finite Element Method, Finite Volume Method). Based on the results of the investigation, calculation models for the heating of cable bundles and for the velocity of circulating coolant flows are developed and implemented in the Thermal Network Method. In order to calculate hot spot temperatures on flameproof enclosures, finely resolved thermal networks are required for the first time. A method for the design of finely resolved thermal networks is developed. A simple approach for the calculation of the heating of planar contacts is extended in this work to convex switching contacts by determining the apparent contact area from measurements with pressure sensing sheets. Thermal networks for the electrical equipment are set up, parameterized and verified experimentally. The overall thermal network is set-up by interconnecting thermal networks of the operating equipment and verified experimentally. The temperatures calculated with the verified overall thermal network were compared with measured temperatures at 100 % rated current. The temperatures deviate slightly. The highest remaining deviations are ΔΘ = +6.3 K and ΔΘ = -6.2 K. The calculated locations of the hot spots agree with measurement. The calculated hot spot temperatures differ from measured hot spot temperatures slightly by a maximum of +3 K. At the normatively required load of 110 % of the rated current, the hot spots are calculated laterally on the flameproof enclosures of two circuit breakers (ϑFZ2 Ob max = 101.6 °C, ϑFZ8 Ob max = 101.8 °C). The verified overall thermal network calculates all temperatures required for temperature-rise tests of the investigated explosion-proof switchgear assembly. Furthermore, the thermal network can be used to calculate temperatures at locations that are difficult to measure (e.g., at the center of cable bundles or inside the flameproof enclosures). With the verified overall thermal network, questions concerning the thermal dimensioning of the explosion-proof switchgear assembly can be answered computationally. Among other things, it can be determined that the permissible rated diversity factor varies between RDF = 0.55 (internally painted, externally highly polished) and RDF = 0.78 (internally painted, externally painted) depending on the external surface finish of the distributor enclosure. The verified overall thermal network is a suitable tool for supporting thermal dimensioning computationally in a targeted and efficient manner.:1 Einleitung 1 2 Erkenntnisstand zur Erwärmung von Niederspannungs-Energieverteilern 3 2.1 Wärmequellen 3 2.2 Wärmeübertragung 9 2.3 Erwärmungsberechnung mit der Wärmenetzmethode 19 2.4 Messen von Oberflächentemperaturen 23 2.5 Grenztemperaturen – Rechtliche und normative Vorgaben 25 3 Musteranlage 34 3.1 Aufbau 34 3.2 Hauptwärmequellen 38 4 Präzisieren der Aufgabenstellung 42 5 Untersuchungen zur Temperaturmessung auf druckfesten Kapselungen 45 5.1 Problemstellung 45 5.2 Analyse der Wärmeströme 46 5.3 Untersuchte Montagekonstruktionen 48 5.4 Versuchsaufbau und -durchführung 49 5.5 Ergebnisse 52 5.6 Angepasste Montagetechnik für druckfeste Kapselungen 55 6 Untersuchungen zur Erwärmung der Betriebsmittel 57 6.1 Explosionsgeschützter Fehlerstrom-Schutzschalter mit Überstromauslöser 57 6.2 Explosionsgeschützter Last- und Motorschalter 74 7 Untersuchungen zur gegenseitigen thermischen Beeinflussung der Betriebsmittel 93 7.1 Erwärmung der Leitungsbündel 93 7.2 Zirkulierender Kühlmittelstrom 111 8 Modellbildung 120 8.1 Strukturierter Aufbau – Verfahren 120 8.2 Wärmenetzmodelle 121 9 Verifikation des Wärmenetzmodells der Musteranlage 133 9.1 Versuchsaufbau 133 9.2 Parameterabgleich 138 9.3 Vergleich der Temperaturen 140 10 Anwendung 150 10.1 Erwärmungsnachweise durch Berechnung 150 10.2 Thermische Dimensionierung durch Berechnung 160 11 Zusammenfassung 166 12 Ausblick 170
Databáze: Networked Digital Library of Theses & Dissertations