Popis: |
Entirely soft robots with animal-like behavior and integrated artificial nervous systems will open up totally new perspectives and applications. To produce them we must integrate control and actuation in the same soft structure. Soft actuators (e.g. pneumatic, and hydraulic) exist but electronics are hard and stiff and remotely located. We present novel soft, electronicsfree dielectric elastomer oscillators, able to drive bioinspired robots. As a demonstrator we present a robot that mimics the crawling motion of the caterpillar, with integrated artificial nervous system, soft actuators and without any conventional stiff electronic parts. Supplied with an external DC voltage, the robot autonomously generates all signals necessary to drive its dielectric elastomer actuators, and translates an in-plane electromechanical oscillation into a crawling locomotion movement. Thereby, all functional and supporting parts are made of polymer materials and carbon. Besides the basic design of this first electronic-free, biomimetic robot we present prospects to control the general behavior of such robots. The absence of conventional stiff electronics and the exclusive use of polymeric materials will provide a large step towards real animal-like robots, compliant human machine interfaces and a new class of distributed, neuron-like internal control for robotic systems. |