Modellierung von Strömungs- und Stofftransportprozessen bei Kombination der ungesättigten Bodenzone mit technischen Anlagen
Autor: | Hasan, Issa |
---|---|
Jazyk: | němčina |
Rok vydání: | 2014 |
Předmět: | |
Druh dokumentu: | Text<br />Doctoral Thesis |
Popis: | Die Modellierung von komplexen Systemen, wie dem Untergrund, ist ein Hilfsmittel zur Beschreibung der in der Realität ablaufenden Prozesse. Die Durchführung von Experimenten an einem Modell, um qualitative Aussagen über ein reales System zu erhalten, wird als Simulation bezeichnet. Dabei können vielfältige Modelle, wie z.B. physikalische und mathematische, zum Einsatz kommen. Die ungesättigte Bodenzone (vadose Zone) bezeichnet den Bereich zwischen der Landoberfläche und dem Grundwasserspiegel, innerhalb dessen der Wassergehalt geringer als bei Vollsättigung, und der Druck geringer als der Atmosphärendruck ist. Dieser Bodenbereich hat für die Landwirtschaft, Geobiologie, aerobe Abbauprozesse und Grundwasserneubildung eine große Bedeutung. Für die Nachbildung von Strömungs- und Stofftransportprozessen der ungesättigten Bodenzone existieren numerische Simulationsprogramme. Ziel der vorliegenden Arbeit ist eine umfangreiche Validierung des Programms PCSiWaPro® (entwickelt an der TU-Dresden, Institut für Abfallwirtschaft und Altlasten) für unterschiedliche Anwendungsfälle. Ein weiteres Ziel der Arbeit besteht in der Untersuchung der Anwendbarkeit des aktuellen Stands des Simulationsprogramms PCSiWaPro® auf unterschiedliche Praxisfälle bei Kombination der ungesättigten Bodenzone mit technischen Anlagen. Vier Anwendungsfälle mit unterschiedlichen Zielen wurden dafür im Rahmen dieser Arbeit untersucht: die Simulation von dezentraler Abwasserversickerung (Kleinkläranlage - KKA) anhand entsprechender Säulen- und Feldversuche, die Berechnung der Grundwasserneubildung am Beispiel von Lysimetern, der Wasserhaushalt von Erddämmen und die Modellierung von Deponieabdeckungssystemen. Die Anwendungsfälle unterscheiden sich durch den Zweck der Simulation, die Geometrie, die Größe, die festgelegten Anfangs- und Randbedingungen, die Simulationszeit, die Materialien, das Koordinatensystem sowie die Ein- und Ausgabewerte. Die Simulationsergebnisse konnten eindeutig zeigen, dass das Programm PCSiWaPro® für alle im Rahmen der vorliegenden Arbeit untersuchten Fälle, mit unterschiedlichen Strömungsregimen, Stofftransport-Parametern, Randbedingungen, Koordinatensystemen sowie Raum- und Zeitdiskretisierungen anwendbar ist. Die Simulationsergebnisse der Säulenversuche am Beispiel dezentraler Abwasserversickerung zeigten eine sehr gute Übereinstimmung zwischen gemessenen und mittels PCSiWa-Pro® berechneten Werten des Wasser- und Stoffhaushaltes (Druckhöhe, Abfluss und Stoff-konzentration) der untersuchten Bodentypen B3 (schwachschluffiger Sand), B4 (Grobsand) und B5 (mittelschluffiger Sand). Die Wurzel des mittleren quadratischen Fehlers (RMSE) betrug für die Berechnung der Druckhöhe 1,84 cm bei B5, 3,61 cm bei B3 und 1,27 cm bei B4. Die relative Abweichung betrug für die Berechnung der Druckhöhe 2,19 % bei B5, 1,3 % bei B3 und ca. 5,3 % bei B4. Die Durchführung der Sensitivitätsanalyse der für die Modellierung relevanten Parameter zeigte eine sehr hohe Sensitivität der VAN GENUCHTEN-Parameter und der gesättigten hydraulischen Leitfähigkeit des Bodens. Darüber hinaus führten die Parameter nach DIN 4220 und die mithilfe von Pedotransferfunktionen aus Siebanalysen genommenen Parameter zu unterschiedlichen Ergebnissen. Im Rahmen des am Institut für Abfallwirtschaft und Altlasten durchgeführten Projektes EGSIM wurden die Programme SENSIT und ISSOP (in Zusammenarbeit mit DUALIS GmbH IT Solution) entwickelt und zur Parameteridentifikation/-kalibrierung benutzt. Die im Rahmen dieser Arbeit erzielten Ergebnisse konnten nachweisen, unter welchen Bedingungen eine Nachklärung des vollbiologisch gereinigten Abwassers innerhalb der Bodenzone möglich ist, so dass am Ort der Beurteilung (Grundwasseroberfläche) kein unzulässiger Schadstoffeintrag erfolgt. In Bezug auf die KKA-Feldmodelle ist die Anwendung des rotationssymmetrischen Koordinatensystems als Voraussetzung der Realität besser zu entsprechen und nicht als Option zu betrachten. Darüber hinaus wurden anhand der Feldmodelle verschiedene Szenarien mit kontinuierlicher und diskontinuierlicher Versickerung sowie zwei unterschiedlich großen Einleitflächen durchgeführt. Das Programm PCSiWaPro® ist sowohl für ungesättigte als auch für variabel-gesättigte porösen Medien anwendbar. Dies wurde im Rahmen der Simulation des Wasserhaushaltes eines Erddamms nachgewiesen. Die durchschnittliche relative Abweichung zwischen gemessenen und mittels PCSiWaPro® berechneten Wasserständen des entsprechenden Beobachtungspunkts im untersuchten Dammkörper lag bei 0,08 % (entspricht 5,8 cm bei einer Müchtigkeit von ca. 70 m) und das Bestimmtheitsmaß (R2) betrug 0,987. Die Simulation des Wasserhaushaltes unterschiedlicher Deponieabdichtungssystemen mittels PCSiWaPro® zeigte im Allgemeinen ein funktionierendes Ableiten des auf Deponien anfallenden Regenwassers (auch bei Starkregenereignissen). Darüber hinaus haben die durchgeführten Bewuchs-Modelle nachweisen können, dass die Vegetation der Deponieoberflächen den Wassergehalt, durch Pflanzenwurzelentzug bzw. Evapotranspiration, reduzieren können. Die Simulationsergebnisse der durchgeführten Szenarien des Wasserhaushaltes von Lysimetern zur prognostischen Berechnung der Grundwasserneubildung mittels PCSiWaPro® konnten nachweisen, dass das Programm für die Berechnung der Grundwasserneubildungsrate für diesen Zweck anwendbar ist. Die relativen Abweichungen der be-rechneten von den gemessenen Grundwasserneubildungsraten sind auf die verwendeten Materialparameter sowie auf Vernachlässigung der möglicherweise in Lysimetern sich befin-denden Makroporen (duale Porosität) zurückzuführen. The modelling of complex systems such as the underground is a means to describe the processes occurring in the reality. The conducting of experiments on a model to obtain qualitative evidence about a real system is referred to as a simulation. Thereby, various models (e.g. physical and mathematical models) can be used. The unsaturated zone (vadose zone) is the region between the land surface and the water table, in which the water content is less than full saturation, and the pressure is lower than the atmospheric pressure. The unsaturated zone is very significant for agriculture, geobiology, aerobic degradation processes and groundwater recharge. The processes of water flow and solute transport in the unsaturated zone can be described by means of numerical simulation programs. The aim of the present work is a comprehensive validation of the simulation program PCSiWaPro® (developed at the TU-Dresden, Institute of Waste Management and Contaminated Site Treatment) for different applications. Another aim of this work is to investigate the applicability of the current version of PCSiWaPro® for different cases of a combination between the unsaturated zone and technical facilities. Four application cases with different objectives were investigated within the present work, which are: the simulation of decentralized wastewater infiltration with corresponding column and field experiments, the computation of groundwater recharge by means of lysimeters, the water balance of earth dams and the modelling of landfill covering systems. The application cases differ from each other by the objective of the simulation, the geometry, the size, the specified initial and boundary conditions, the simulation time, the applied materials, the coordinate system, the input and output data. The simulation results clearly showed that PCSiWaPro® is applicable for all investigated cases under consideration of different flow and solute transport regimes, parameters, boundary conditions, spatial and temporal discretization, and coordinate systems. The simulation results of the experimental soil columns for the decentralized treated wastewater infiltration case showed a very good agreement between measured and computed values of water and solute balance (pressure head, flow and solute concentration) of the investigated soil types B3 (slightly silty sand), B4 (coarse sand / gravel) and B5 (medium silty sand). The root of the mean squared error (RMSE) for the computation of the pressure head was 1,84 cm at B5, 3,61 cm at B3 and 1,27 cm at B4. The relative deviation in case of pressure head computation was 2,19 % at B5, 1,3 % at B3 and 5,3 % at B4. The implementation of the sensitivity analysis of the relevant parameters for the modelling showed a very high sensitivity of the VAN GENUCHTEN parameters and the saturated hydraulic conductivity of the soil. Moreover, the parameters according to DIN 4220 led to different results than the estimated ones according to pedotransfer methods based on sieve analysis. Within the project EGSIM, which was carried out at the Institute for waste management and contaminated sites treatment in collaboration with DUALIS GmbH IT Solution, the programs SENSIT and ISSOP were developed and used for parameter identification/ calibration. The results obtained in this Work showed under which conditions is a secondary treatment of full biologically treated wastewater in the soil possible, so that no unallowable pollutants entry in the groundwater occurs. With regard to the field models of this application the implementation of the rotationally symmetric coordinate system should be considered as a condition and not as an option for a better corresponding to the reality. Furthermore, different scenarios of the field models were carried out with continuous and discontinuous infiltration, as well as under different initiation areas. PCSiWaPro® could be applied for both unsaturated and variably-saturated porous media. This could be proven by the simulation of the water balance in an earth dam. The average relative deviation between measured and simulated water levels of the corresponding observation point in the investigated dam embankment was 0,08 % (corresponding to 5,8 cm at 70 m thickness) and the coefficient of determination (R2) was 0,987. In general, the simulation of the water balance using PCSiWaPro® of different landfill covering systems showed a successful draining of the falling rainwater (even under heavy rainfall). In addition, the implemented vegetation models have proven that the vegetation of the landfill surface can reduce the water content in the landfill by evapotranspiration and water uptake by roots. The water balance simulation results of the scenarios for the computation of groundwater recharge by means of lysimeters showed that the program is applicable for this case. The relative deviation of the simulated from the measured groundwater recharge rates occur due to the implemented material parameters as well as to the neglect of macro pores effects (dual porosity). |
Databáze: | Networked Digital Library of Theses & Dissertations |
Externí odkaz: |