Popis: |
Dans les milieux où la densité et la polarisation nucléaire sont importantes (par exemple l'eau dans un fort champ magnétique en RMN haute résolution, ou le xénon 129 et l'hélium 3 liquides polarisés au-delà de la polarisation d'équilibre par pompage optique), la densité d'aimantation est suffisante pour que la dynamique de cette aimantation soit influencée par les couplages non-linéaires induits par les champs magnétiques dipolaires. Ce travail de thèse comprend d'abord une étude expérimentale des effets de ces couplages dipolaires dans un échantillon en forme de tube en U de xénon 129 liquide hyperpolarisé (jusqu'à 6% de polarisation obtenu par pompage optique) ; la dynamique de l'aimantation y est étudiée par résonance magnétique nucléaire (RMN) dans un champ magnétique peu intense (1.5 mT). Puis nous détaillons quelques modèles numériques destinés à reproduire les comportements observés récemment dans les systèmes hyperpolarisés expérimentaux et plus généralement utilisables dans tous les cas où les couplages dipolaires jouent un rôle. Etude expérimentale et modélisations démontrent que les caractéristiques de l'évolution de l'aimantation dépendent crucialement de paramètres tels que la forme de l'échantillon, l'angle de basculement et l'importance relative des champs dipolaires et des variations spatiales des champs appliqués. Dans les échantillons anisotropes et à faibles angles de basculement, le spectre RMN présente une structure en plusieurs raies fines et résolues ("spectral clustering") ; ceci correspond à une organisation spatiale de l'aimantation en modes indépendants. Dans tous les systèmes, à grands angles de basculement, les temps de vie peuvent être raccourcis de manière spectaculaire (de deux ordres de grandeur) ; ceci s'interprète comme une instabilité de précession aboutissant à des distributions désordonnées d'aimantation. |