Popis: |
Cette thèse se décompose en deux parties indépendantes. Notre objectif dans la première partie est d'étudier le comportement asymptotique des $U$-statistiques, basées sur des noyaux d'ordre 2, échantillonnées par une marche aléatoire. Plus précisément, on se donne $(S_n)_(n \in \N)$ une marche aléatoire sur $\Z^d$, $d \geq 1$ et $(\xi_x)_(x \in \Z^(d))$ une collection de variables aléatoires indépendantes, identiquement distribuées, indépendante de $(S_n)_(n \in \N)$. On note $\mu$ la loi de $\xi_0$ et l'on désigne par $h : \R^2\ra \R$, une fonction mesurable, symétrique, telle que $h \in L^2(\mu\otimes\mu)$. On s'intéresse au comportement asymptotique de la suite de processus, $$ \cU_n(t)=\sum_(i,j=0)^([nt])h(\xi_(S_i), \xi_(S_j)), \quad t\in[0,1], \quad n=0,1,\ldots, $$ à valeurs dans $\cD([0,1])$, l'espace des fonctions c.à.l.à.g. définies sur $[0,1]$, muni de la topologie de Skorohod. Cabus et Guillotin ont obtenu la distribution asymptotique de ces objets, dans le cas où la marche aléatoire, $(S_n)_(n \in \N)$, est récurrente sur $\Z^2$, ainsi que dans le cas où elle est transiente sur $\Z^d$, pour $d\geq3$. Elles ont également conjecturé la forme de la distribution limite, dans le cas de la marche aléatoire simple, symétrique, sur $\Z$. Dans le cas où $\Sn$ appartient au domaine d'attraction d'une loi stable d'indice $1 |