Nanonet-Based Materials for Advanced Energy Storage
Autor: | Zhou, Sa |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2012 |
Předmět: | |
Druh dokumentu: | Diplomová práce |
Popis: | Thesis advisor: Dunwei Wang When their electrodes are made of nanomaterials or materials with nanoscale features, devices for energy conversion and energy storage often exhibit new and improved properties. One of the main challenges in material science, however, is to synthesize these nanomaterials with designed functionality in a predictable way. This thesis presents our successes in synthesizing TiSi₂ nanostructures with various complexities using a chemical vapor deposition (CVD) method. Attention has been given to understanding the chemistry guiding the growth. The governing factor was found to be the surface energy differences between various crystal planes of orthorhombic TiSi₂ (C54 and C49). This understanding has allowed us to control the growth morphologies and to obtain one-dimensional (1D) nanowires, two-dimensional (2D) nanonets and three-dimensional (3D) complexes with rational designs by tuning the chemical reactions between precursors. Among all these morphologies, the 2D nanonet, which is micrometers wide and long but only approximately 15 nm thick, has attracted great interest because it is connected by simple nanostructures with single-crystalline junctions. It offers better mechanical strength and superior charge transport while preserving unique properties associated with the small-dimension nanostructure, which opens up the opportunity to use it for various energy related applications. In this thesis we focus on its applications in lithium ion batteries. With a unique heteronanostructure consisting of 2D TiSi₂ nanonets and active material coating, we demonstrate the performances of both anode and cathode of lithium ion batteries can be highly improved. For anode, Si nanoparticles are deposited as the coating and at a charge/discharge rate of 8400 mA/g, we measure specific capacities >1000 mAh/g with only an average of 0.1% decay per cycle over 100 cycles. For cathode, V₂O₅ is employed as an example. The TiSi₂/V₂O₅ nanostructures exhibit a specific capacityof 350 mAh/g, a power rate up to 14.5 kW/kg, and 78.7% capacity retention after 9800 cycles. In addition, TiSi₂ nanonet itself is found to be a good anode material due to the special layer-structure of C49 crystals. Thesis (PhD) — Boston College, 2012. Submitted to: Boston College. Graduate School of Arts and Sciences. Discipline: Chemistry. |
Databáze: | Networked Digital Library of Theses & Dissertations |
Externí odkaz: |