Etude de lévolution de létat de surface de matériaux optiques sous bombardement ionique à faible énergie/Study of roughness evolution of optical materials sputtered with low energy ion beam

Autor: Gailly, Patrick
Rok vydání: 2011
Předmět:
Druh dokumentu: Text
Popis: In this work the roughness and topography evolution of optical materials sputtered with low energy ion beam (≤1 keV) has been investigated. These materials (bulk or thin layer) are used in the manufacturing of mirrors for scientific (ground or space) instruments or for other optical applications. In the first part of the work, the roughness evolution of optical surfaces under sputtering has been investigated in the frame of the industrial process known as Ion Beam Figuring. This technique consists in removing shape errors on optical surfaces with a low energy ion beam (≤1 keV). One disadvantage of this process is a potential increase of roughness for surfaces under treatment. The roughness evolution of some materials relevant to the optical industry has been accurately characterized as function of etching depth down to 5 µm. These sputtering experiments have been carried out at normal incidence, mainly with argon ions (but also in a lesser extent with krypton and xenon ions), ion current density of ~1 mA/cm2 and ion beam energy ranging from 200 eV to 1000 eV. The roughness evolution under sputtering is low for materials with amorphous (glass, electroless nickel), monocrystalline (silicon) or even polycrystalline structure (CVD silicon carbide, PVD gold or nickel film), whereas it is considerably more important for some other metallic materials such as electroplated nickel and aluminium. This work has shown small differences in the roughness evolution of CVD silicon carbide as function of the ion beam energy. The roughness increase is faster at low ion energy
Databáze: Networked Digital Library of Theses & Dissertations