Microfluctuations of Wavefront Aberrations of the Eye

Autor: Zhu, Mingxia
Rok vydání: 2005
Předmět:
Popis: The human eye suffers various optical aberrations that degrade the retinal image. These aberrations include defocus and astigmatism, as well as the higher order aberrations that also play an important role in our vision. The optics of the eye are not static, but are continuously fluctuating. The work reported in this thesis has studied the nature of the microfluctuations of the wavefront aberrations of the eye and has investigated factors that influence the microfluctuations. The fluctuations in the ocular surface of the eye were investigated using high speed videokeratoscopy which measures the dynamics of the ocular surface topography. Ocular surface height difference maps were computed to illustrate the changes in the tear film in the inter-blink interval. The videokeratoscopy data was used to derive the ocular surface wavefront aberrations up to the 4th radial order of the Zernike polynomial expension. We examined the ocular surface dynamics and temporal changes in the ocular surface wavefront aberrations in the inter-blink interval. During the first 0.5 sec following a blink, the tear thickness at the upper edge of the topography map appeared to thicken by about 2 microns. The influence of pulse and instantaneous pulse rate on the microfluctuations in the corneal wavefront aberrations was also investigated. The fluctuations in ocular surface wavefront aberrations were found to be uncorrelated with the pulse and instantaneous heart rates. In the clinical measurement of the ocular surface topography using videokeratoscopy, capturing images 2 to 3 seconds after a blink will result in more consistent results. To investigate fluctuations in the wavefront aberrations of the eye and their relation to pulse and respiration frequencies we used a wavefront sensor to measure the dynamics of the aberrations up to the Zernike polynomial 4th radial order. Simultaneously, the subject's pulse rate was measured, from which the instantaneous heart rate was derived. An auto-regressive process was used to derive the power spectra of the Zernike aberration signals, as well as pulse and instantaneous heart rate signals. Linear regression analysis was performed between the frequency components of Zernike aberrations and the pulse and instantaneous heart rate frequencies. Cross spectrum density and coherence analyses were also applied to investigate the relation between fluctuations of wavefront aberrations and pulse and instantaneous heart rate. The correlations between fluctuations of individual Zernike aberrations were also determined. A frequency component of all Zernike aberrations up to the 4th radial order was found to be significantly correlated with the pulse frequency (all > 2R0.51, p2R0.46, p
Databáze: Networked Digital Library of Theses & Dissertations