Popis: |
Online learning algorithms have several key advantages compared to their batch learning algorithm counterparts: they are generally more memory efficient, and computationally mor efficient; they are simpler to implement; and they are able to adapt to changes where the learning model is time varying. Online algorithms because of their simplicity are very appealing to practitioners. his thesis investigates several online learning algorithms and their application. The thesis has an underlying theme of the idea of combining several simple algorithms to give better performance. In this thesis we investigate: combining weights, combining hypothesis, and (sort of) hierarchical combining.¶ Firstly, we propose a new online variant of the Bayes point machine (BPM), called the online Bayes point machine (OBPM). We study the theoretical and empirical performance of the OBPm algorithm. We show that the empirical performance of the OBPM algorithm is comparable with other large margin classifier methods such as the approximately large margin algorithm (ALMA) and methods which maximise the margin explicitly, like the support vector machine (SVM). The OBPM algorithm when used with a parallel architecture offers potential computational savings compared to ALMA. We compare the test error performance of the OBPM algorithm with other online algorithms: the Perceptron, the voted-Perceptron, and Bagging. We demonstrate that the combinationof the voted-Perceptron algorithm and the OBPM algorithm, called voted-OBPM algorithm has better test error performance than the voted-Perceptron and Bagging algorithms. We investigate the use of various online voting methods against the problem of ranking, and the problem of collaborative filtering of instances. We look at the application of online Bagging and OBPM algorithms to the telecommunications problem of channel equalization. We show that both online methods were successful at reducing the effect on the test error of label flipping and additive noise.¶ Secondly, we introduce a new mixture of experts algorithm, the fixed-share hierarchy (FSH) algorithm. The FSH algorithm is able to track the mixture of experts when the switching rate between the best experts may not be constant. We study the theoretical aspects of the FSH and the practical application of it to adaptive equalization. Using simulations we show that the FSH algorithm is able to track the best expert, or mixture of experts, in both the case where the switching rate is constant and the case where the switching rate is time varying. |