Machine learning methods for endocrine disrupting potential identification based on single-cell data
Autor: | Aghayev, Zahir, Szafran, Adam T., Tran, Anh, Ganesh, Hari S., Stossi, Fabio, Zhou, Lan, Mancini, Michael A., Pistikopoulos, Efstratios N., Beykal, Burcu |
---|---|
Zdroj: | In Chemical Engineering Science 5 November 2023 281 |
Databáze: | ScienceDirect |
Externí odkaz: |