Machine learning methods for endocrine disrupting potential identification based on single-cell data

Autor: Aghayev, Zahir, Szafran, Adam T., Tran, Anh, Ganesh, Hari S., Stossi, Fabio, Zhou, Lan, Mancini, Michael A., Pistikopoulos, Efstratios N., Beykal, Burcu
Zdroj: In Chemical Engineering Science 5 November 2023 281
Databáze: ScienceDirect