Autor: |
B. C. Hornbuckle, R. K. Koju, G. Kennedy, P. Jannotti, N. Lorenzo, J. T. Lloyd, A. Giri, K. Solanki, N. N. Thadhani, Y. Mishin, K. A. Darling |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Nature Communications, Vol 15, Iss 1, Pp 1-11 (2024) |
Druh dokumentu: |
article |
ISSN: |
2041-1723 |
DOI: |
10.1038/s41467-024-53142-3 |
Popis: |
Abstract Energy absorption by matter is fundamental to natural and man-made processes. However, despite this ubiquity, developing materials capable of withstanding severe energy fluxes without degradation is a significant challenge in materials science and engineering. Despite recent advances in creating alloys resistant to energy fluxes, mitigating the damage caused by the absorption and transfer of mechanical energy remains a critical obstacle in both fundamental science and technological applications. This challenge is especially prominent when the mechanical energy is transferred to the material by shock loading. This study demonstrates a phenomenon in which microstructurally stabilized nanocrystalline Cu-Ta alloys can undergo reversal or nearly complete recovery of the dislocation structure after multiple shock-loading impacts, unlike any other known metallic material. The microstructure of these alloys can withstand repeated shock-wave interactions at pressures up to 12 GPa without any significant microstructural damage or deterioration, demonstrating an extraordinary capacity to be virtually immune to the detrimental effects of shock loading. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|