Bifurcation curve for the Minkowski-curvature equation with concave or geometrically concave nonlinearity

Autor: Kuo-Chih Hung
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Boundary Value Problems, Vol 2024, Iss 1, Pp 1-18 (2024)
Druh dokumentu: article
ISSN: 1687-2770
DOI: 10.1186/s13661-024-01906-7
Popis: Abstract We study the bifurcation curve and exact multiplicity of positive solutions in the space C 2 ( ( − L , L ) ) ∩ C ( [ − L , L ] ) $C^{2}\left ( (-L,L)\right ) \cap C\left ( [-L,L]\right ) $ for the Minkowski-curvature equation { − ( u ′ ( x ) 1 − ( u ′ ( x ) ) 2 ) ′ = λ f ( u ) , − L < x < L , u ( − L ) = u ( L ) = 0 . $$ \left \{ \textstyle\begin{array}{l} -\left ( \dfrac{u^{\prime }(x)}{\sqrt{1-\left ( {u^{\prime }(x)}\right ) ^{2}}}\right ) ^{\prime }=\lambda f(u),\text{\ \ }-L< x< L, \\ u(-L)=u(L)=0.\end{array}\displaystyle \right . $$ where λ > 0 $\lambda >0$ is a bifurcation parameter, f ∈ C [ 0 , ∞ ) ∩ C 2 ( 0 , ∞ ) $f\in C[0,\infty )\cap C^{2}(0,\infty )$ satisfies f ( u ) > 0 $f(u)>0$ for u > 0 $u>0$ and f is either concave or geometrically concave on ( 0 , ∞ ) $(0,\infty )$ . If f is a concave function, we prove that the bifurcation curve is monotone increasing on the ( λ , ∥ u ∥ ∞ ) $(\lambda ,\left \Vert u\right \Vert _{\infty })$ -plane. If f is a geometrically concave function, we prove that the bifurcation curve is either ⊂-shaped or monotone increasing on the ( λ , ∥ u ∥ ∞ ) $(\lambda ,\left \Vert u\right \Vert _{\infty })$ -plane under a mild condition. Some interesting applications are given.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje