Time Series InSAR Three-Dimensional Displacement Inversion Model of Coal Mining Areas Based on Symmetrical Features of Mining Subsidence

Autor: Longkai Dong, Chao Wang, Yixian Tang, Fuquan Tang, Hong Zhang, Jing Wang, Wei Duan
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Remote Sensing, Vol 13, Iss 11, p 2143 (2021)
Druh dokumentu: article
ISSN: 2072-4292
DOI: 10.3390/rs13112143
Popis: The three-dimensional (3-D) displacements of mining areas is the basis of studying the mining subsidence law and obtaining surface movement parameters. The traditional multi-temporal interferometry synthetic aperture radar (InSAR) technology can only obtain the surface deformation in line-of-sight (LOS) direction, even if some methods can obtain the 3-D displacements of mining area based on InSAR. However, it has high data requirements for data types, which are not conducive to the inversion of 3-D displacements. In this paper, the symmetry of the surface basin caused by mining subsidence under different mining degrees is analyzed. According to the basic symmetrical features of mining subsidence—that the surface vertical displacement and horizontal displacement in near horizontal coal seam is symmetrical with respect to the main section of the basin, combined with time series InSAR technology (TS-InSAR)—a novel method for retrieving the 3-D displacement results from a single-geometry InSAR dataset based on symmetrical features (hereafter referred to as the SGI-SF method) is proposed. The SGI-SF method first generates multi-temporal observations of LOS displacement from a single-geometry InSAR dataset, and then transforms them into multi-temporal observations of 3-D displacement datasets according to symmetrical features. There is no necessity to obtain the surface movement parameters from the measured data to calculate 3-D displacement fields. Finally, the time series of 3-D displacements are estimated from multi-temporal 3-D displacements using the singular value decomposition (SVD) method. Nine descending Sentinel-1 images from the Yulin mining area of China are used to test the proposed SGI-SF method. The results show that the average root mean square errors (RMSE) in the vertical and horizontal direction of the three-dimensional deformations are approximately 9.28 mm and 13.10 mm, respectively, which are much smaller than mining-induced displacements and can provide support for deformation monitoring in mining areas.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje