Autor: |
Joevonte Kimbrough, Lauren Williams, Qunying Yuan, Zhigang Xiao |
Jazyk: |
angličtina |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
Micromachines, Vol 12, Iss 1, p 12 (2020) |
Druh dokumentu: |
article |
ISSN: |
2072-666X |
DOI: |
10.3390/mi12010012 |
Popis: |
In this paper, we report the wafer-scale fabrication of carbon nanotube field-effect transistors (CNTFETs) with the dielectrophoresis (DEP) method. Semiconducting carbon nanotubes (CNTs) were positioned as the active channel material in the fabrication of carbon nanotube field-effect transistors (CNTFETs) with dielectrophoresis (DEP). The drain-source current (IDS) was measured as a function of the drain-source voltage (VDS) and gate-source voltage (VGS) from each CNTFET on the fabricated wafer. The IDS on/off ratio was derived for each CNTFET. It was found that 87% of the fabricated CNTFETs was functional, and that among the functional CNTFETs, 30% of the CNTFETs had an IDS on/off ratio larger than 20 while 70% of the CNTFETs had an IDS on/off ratio lower than 20. The highest IDS on/off ratio was about 490. The DEP-based positioning of carbon nanotubes is simple and effective, and the DEP-based device fabrication steps are compatible with Si technology processes and could lead to the wafer-scale fabrication of CNT electronic devices. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|