The Pseudomonas aeruginosa accessory genome elements influence virulence towards Caenorhabditis elegans
Autor: | Alejandro Vasquez-Rifo, Isana Veksler-Lublinsky, Zhenyu Cheng, Frederick M. Ausubel, Victor Ambros |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: | |
Zdroj: | Genome Biology, Vol 20, Iss 1, Pp 1-22 (2019) |
Druh dokumentu: | article |
ISSN: | 1474-760X 88685470 |
DOI: | 10.1186/s13059-019-1890-1 |
Popis: | Abstract Background Multicellular animals and bacteria frequently engage in predator-prey and host-pathogen interactions, such as the well-studied relationship between Pseudomonas aeruginosa and the nematode Caenorhabditis elegans. This study investigates the genomic and genetic basis of bacterial-driven variability in P. aeruginosa virulence towards C. elegans to provide evolutionary insights into host-pathogen relationships. Results Natural isolates of P. aeruginosa that exhibit diverse genomes display a broad range of virulence towards C. elegans. Using gene association and genetic analysis, we identify accessory genome elements that correlate with virulence, including both known and novel virulence determinants. Among the novel genes, we find a viral-like mobile element, the teg block, that impairs virulence and whose acquisition is restricted by CRISPR-Cas systems. Further genetic and genomic evidence suggests that spacer-targeted elements preferentially associate with lower virulence while the presence of CRISPR-Cas associates with higher virulence. Conclusions Our analysis demonstrates substantial strain variation in P. aeruginosa virulence, mediated by specific accessory genome elements that promote increased or decreased virulence. We exemplify that viral-like accessory genome elements that decrease virulence can be restricted by bacterial CRISPR-Cas immune defense systems, and suggest a positive, albeit indirect, role for host CRISPR-Cas systems in virulence maintenance. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |