On existence results for a class of biharmonic elliptic problems without (AR) condition

Autor: Dengfeng Lu, Shuwei Dai
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: AIMS Mathematics, Vol 9, Iss 7, Pp 18897-18909 (2024)
Druh dokumentu: article
ISSN: 2473-6988
DOI: 10.3934/math.2024919?viewType=HTML
Popis: In this paper, we study the following biharmonic elliptic equation in $ \mathbb{R}^{N} $: $ \Delta^{2}\psi-\Delta \psi+P(x)\psi = g(x, \psi), \ \ x\in\mathbb{R}^{N}, $ where $ g $ and $ P $ are periodic in $ x_{1}, \cdots, x_{N} $, $ g(x, \psi) $ is subcritical and odd in $ \psi $. Without assuming the Ambrosetti-Rabinowitz condition, we prove the existence of infinitely many geometrically distinct solutions for this equation, and the existence of ground state solutions is established as well.
Databáze: Directory of Open Access Journals