Nonparametric Kernel Smoothing Item Response Theory Analysis of Likert Items

Autor: Purya Baghaei, Farshad Effatpanah
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Psych, Vol 6, Iss 1, Pp 236-259 (2024)
Druh dokumentu: article
ISSN: 2624-8611
DOI: 10.3390/psych6010015
Popis: Likert scales are the most common psychometric response scales in the social and behavioral sciences. Likert items are typically used to measure individuals’ attitudes, perceptions, knowledge, and behavioral changes. To analyze the psychometric properties of individual Likert-type items and overall Likert scales, mostly methods based on classical test theory (CTT) are used, including corrected item–total correlations and reliability indices. CTT methods heavily rely on the total scale scores, making it challenging to directly examine the performance of items and response options across varying levels of the trait. In this study, Kernel Smoothing Item Response Theory (KS-IRT) is introduced as a graphical nonparametric IRT approach for the evaluation of Likert items. Unlike parametric IRT models, nonparametric IRT models do not involve strong assumptions regarding the form of item response functions (IRFs). KS-IRT provides graphics for detecting peculiar patterns in items across different levels of a latent trait. Differential item functioning (DIF) can also be examined by applying KS-IRT. Using empirical data, we illustrate the application of KS-IRT to the examination of Likert items on a psychological scale.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje