C2-addition patterns emerging from acetylene and nickel sulfide in simulated prebiotic hydrothermal conditions

Autor: Philippe Diederich, Alexander Ruf, Thomas Geisberger, Leopold Weidner, Christian Seitz, Wolfgang Eisenreich, Claudia Huber, Philippe Schmitt-Kopplin
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Communications Chemistry, Vol 6, Iss 1, Pp 1-9 (2023)
Druh dokumentu: article
ISSN: 2399-3669
DOI: 10.1038/s42004-023-01021-1
Popis: Abstract Chemical complexity is vital not only for the origin of life but also for biological evolution. The chemical evolution of a complex prebiotic mixture containing acetylene, carbon monoxide (CO), and nickel sulfide (NiS) has been analyzed with mass spectrometry as an untargeted approach to reaction monitoring. Here we show through isotopic 13C-labelling, multiple reaction products, encompassing diverse CHO and CHOS compounds within the complex reaction mixture. Molecules within the same chemical spaces displayed varying degrees of 13C-labelling, enabling more robust functional group characterization based on targeted investigations and differences in saturation levels among the described classes. A characteristic C2-addition pattern was detected in all compound classes in conjunction with a high diversity of thio acids, reminiscent of extant microbial C2-metabolism. The analysis involved a time-resolved molecular network, which unveiled the behavior of sulfur in the system. At the onset of the reaction, early formed compounds contain more sulfur atoms compared to later emerging compounds. These results give an essential insight into the still elusive role of sulfur dynamics in the origin of life. Moreover, our results provide temporally resolved evidence of the progressively increasing molecular complexity arising from a limited number of compounds.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje