Autor: |
Abdalla Mansur, Muhammad Shoaib, Iharka Szücs-Csillik, Daniel Offin, Jack Brimberg |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
AIMS Mathematics, Vol 8, Iss 8, Pp 17650-17665 (2023) |
Druh dokumentu: |
article |
ISSN: |
2473-6988 |
DOI: |
10.3934/math.2023901?viewType=HTML |
Popis: |
In this paper, we study the minimizing property for the isosceles trapezoid solutions of the four-body problem. We prove that the minimizers of the action functional restricted to homographic solutions are the Keplerian elliptical solutions, and this functional has a minimum equal to $ \frac{3}{2}(2\pi)^{2/3}T^{1/3}\left(\frac{\xi (a, b)}{\eta (a, b)}\right) ^{2/3} $. Further, we investigate the dynamical behavior in the trapezoidal four-body problem using the Poincaré surface of section method. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|