Action minimizing orbits in the trapezoidal four body problem

Autor: Abdalla Mansur, Muhammad Shoaib, Iharka Szücs-Csillik, Daniel Offin, Jack Brimberg
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: AIMS Mathematics, Vol 8, Iss 8, Pp 17650-17665 (2023)
Druh dokumentu: article
ISSN: 2473-6988
DOI: 10.3934/math.2023901?viewType=HTML
Popis: In this paper, we study the minimizing property for the isosceles trapezoid solutions of the four-body problem. We prove that the minimizers of the action functional restricted to homographic solutions are the Keplerian elliptical solutions, and this functional has a minimum equal to $ \frac{3}{2}(2\pi)^{2/3}T^{1/3}\left(\frac{\xi (a, b)}{\eta (a, b)}\right) ^{2/3} $. Further, we investigate the dynamical behavior in the trapezoidal four-body problem using the Poincaré surface of section method.
Databáze: Directory of Open Access Journals