A note on some identities of derangement polynomials

Autor: Taekyun Kim, Dae San Kim, Gwan-Woo Jang, Jongkyum Kwon
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Journal of Inequalities and Applications, Vol 2018, Iss 1, Pp 1-17 (2018)
Druh dokumentu: article
ISSN: 1029-242X
DOI: 10.1186/s13660-018-1636-8
Popis: Abstract The problem of counting derangements was initiated by Pierre Rémond de Montmort in 1708 (see Carlitz in Fibonacci Q. 16(3):255–258, 1978, Clarke and Sved in Math. Mag. 66(5):299–303, 1993, Kim, Kim and Kwon in Adv. Stud. Contemp. Math. (Kyungshang) 28(1):1–11 2018. A derangement is a permutation that has no fixed points, and the derangement number dn $d_{n}$ is the number of fixed-point-free permutations on an n element set. In this paper, we study the derangement polynomials and investigate some interesting properties which are related to derangement numbers. Also, we study two generalizations of derangement polynomials, namely higher-order and r-derangement polynomials, and show some relations between them. In addition, we express several special polynomials in terms of the higher-order derangement polynomials by using umbral calculus.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje