Autor: |
Ivan Kostov, Valentina B. Petkova, Didina Serban |
Jazyk: |
angličtina |
Rok vydání: |
2019 |
Předmět: |
|
Zdroj: |
Journal of High Energy Physics, Vol 2019, Iss 11, Pp 1-27 (2019) |
Druh dokumentu: |
article |
ISSN: |
1029-8479 |
DOI: |
10.1007/JHEP11(2019)178 |
Popis: |
Abstract The computation of a certain class of four-point functions of heavily charged BPS operators boils down to the computation of a special form factor — the octagon. In this paper, which is an extended version of the short note [1], we derive a non-perturbative formula for the square of the octagon as the determinant of a semi-infinite skew-symmetric matrix. We show that perturbatively in the weak coupling limit the octagon is given by a determinant constructed from the polylogarithms evaluating ladder Feynman graphs. We also give a simple operator representation of the octagon in terms of a vacuum expectation value of massless free bosons or fermions living in the rapidity plane. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|