The octagon as a determinant

Autor: Ivan Kostov, Valentina B. Petkova, Didina Serban
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Journal of High Energy Physics, Vol 2019, Iss 11, Pp 1-27 (2019)
Druh dokumentu: article
ISSN: 1029-8479
DOI: 10.1007/JHEP11(2019)178
Popis: Abstract The computation of a certain class of four-point functions of heavily charged BPS operators boils down to the computation of a special form factor — the octagon. In this paper, which is an extended version of the short note [1], we derive a non-perturbative formula for the square of the octagon as the determinant of a semi-infinite skew-symmetric matrix. We show that perturbatively in the weak coupling limit the octagon is given by a determinant constructed from the polylogarithms evaluating ladder Feynman graphs. We also give a simple operator representation of the octagon in terms of a vacuum expectation value of massless free bosons or fermions living in the rapidity plane.
Databáze: Directory of Open Access Journals