Autor: |
Junjie He, Mianjie Lin, Fei Ma |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Photonics, Vol 11, Iss 8, p 769 (2024) |
Druh dokumentu: |
article |
ISSN: |
2304-6732 |
DOI: |
10.3390/photonics11080769 |
Popis: |
With the rapid development of optical communication and quantum information, the demand for efficient and broadband nonlinear frequency conversion has increased. At present, most single-frequency conversion processes in lithium niobate on insulator (LNOI) waveguides suffer from lateral leakage without proper design, leading to an additional increase in propagation loss. Achieving broadband frequency conversion also encounters this problem in that there are no relevant works that have solved this yet. In this paper, we theoretically propose an efficient and flat broadband second harmonic generation (SHG) in silicon nitride loaded apodized chirped periodically poled LNOI waveguides. By using a bound states in the continuum (BICs) mechanism to reduce the propagation loss and utilizing the characteristic that the BICs are insensitive to wavelength, an ultra-low-loss wave band of 80 nm is realized. Then, by employing an apodized chirped design, a flat broadband SHG is achieved. The normalized conversion efficiency (NCE) is approximately 222%W−1cm−2, and the bandwidth is about 100 nm. Moreover, the presented waveguides are simple and can be fabricated without direct etching of lithium niobate, exhibiting excellent fabrication tolerance. Our work may open a new avenue for exploring low-loss and flat broadband nonlinear frequency conversion on various on-chip integrated photonic platforms. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|