Autor: |
Kyung-O Kim, Gyuhong Roh, Byungchul Lee |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Nuclear Engineering and Technology, Vol 54, Iss 11, Pp 4226-4230 (2022) |
Druh dokumentu: |
article |
ISSN: |
1738-5733 |
DOI: |
10.1016/j.net.2022.06.017 |
Popis: |
The Korea Atomic Energy Research Institute (KAERI) has designed a Hybrid-Low Power Research Reactor (H-LPRR) which can be used for critical assembly and conventional research reactor as well. It is an open tank-in-pool type research reactor (Thermal Power: 50 kWth) of which the most important applications are Neutron Activation Analysis (NAA), Radioisotope (RI) production, education and training. There are eight irradiation holes on the edge of the reactor core: IR (6 holes for RI production) and NA (2 holes for NAA) holes. In order to quantify the elemental concentration in target samples through the Instrumental Neutron Activation Analysis (INAA), it is necessary to measure neutron spectrum parameters such as thermal neutron flux, the deviation from the ideal 1/E epithermal neutron flux distribution (α), and the thermal-to-epithermal neutron flux ratio (f) for the irradiation holes. In this study, the MCNP6.1 code and FORTRAN 90 language are applied to determine the parameters for the two irradiation holes (NA-SW and NA-NW) in H-LPRR, and in particular its α and f parameters are compared to values of other research reactors. The results confirmed that the neutron irradiation holes in H-LPRR are designed to be sufficiently applied to neutron activation analysis, and its performance is comparable to that of foreign research reactors including the TRIGA MARK II. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|