Commutative rings with homomorphic power functions
Autor: | David E. Dobbs, John O. Kiltinen, Bobby J. Orndorff |
---|---|
Jazyk: | angličtina |
Rok vydání: | 1992 |
Předmět: | |
Zdroj: | International Journal of Mathematics and Mathematical Sciences, Vol 15, Iss 1, Pp 91-102 (1992) |
Druh dokumentu: | article |
ISSN: | 0161-1712 1687-0425 01611712 |
DOI: | 10.1155/S0161171292000103 |
Popis: | A (commutative) ring R (with identity) is called m-linear (for an integer m≥2) if (a+b)m=am+bm for all a and b in R. The m-linear reduced rings are characterized, with special attention to the finite case. A structure theorem reduces the study of m-linearity to the case of prime characteristic, for which the following result establishes an analogy with finite fields. For each prime p and integer m≥2 which is not a power of p, there exists an integer s≥m such that, for each ring R of characteristic p, R is m-linear if and only if rm=rps for each r in R. Additional results and examples are given. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |