Commutative rings with homomorphic power functions

Autor: David E. Dobbs, John O. Kiltinen, Bobby J. Orndorff
Jazyk: angličtina
Rok vydání: 1992
Předmět:
Zdroj: International Journal of Mathematics and Mathematical Sciences, Vol 15, Iss 1, Pp 91-102 (1992)
Druh dokumentu: article
ISSN: 0161-1712
1687-0425
01611712
DOI: 10.1155/S0161171292000103
Popis: A (commutative) ring R (with identity) is called m-linear (for an integer m≥2) if (a+b)m=am+bm for all a and b in R. The m-linear reduced rings are characterized, with special attention to the finite case. A structure theorem reduces the study of m-linearity to the case of prime characteristic, for which the following result establishes an analogy with finite fields. For each prime p and integer m≥2 which is not a power of p, there exists an integer s≥m such that, for each ring R of characteristic p, R is m-linear if and only if rm=rps for each r in R. Additional results and examples are given.
Databáze: Directory of Open Access Journals