Revolutionizing adjuvant development: harnessing AI for next-generation cancer vaccines

Autor: Wan-Ying Zhang, Xiao-Li Zheng, Paolo Saul Coghi, Jun-Hui Chen, Bing-Jun Dong, Xing-Xing Fan
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Frontiers in Immunology, Vol 15 (2024)
Druh dokumentu: article
ISSN: 1664-3224
DOI: 10.3389/fimmu.2024.1438030
Popis: With the COVID-19 pandemic, the importance of vaccines has been widely recognized and has led to increased research and development efforts. Vaccines also play a crucial role in cancer treatment by activating the immune system to target and destroy cancer cells. However, enhancing the efficacy of cancer vaccines remains a challenge. Adjuvants, which enhance the immune response to antigens and improve vaccine effectiveness, have faced limitations in recent years, resulting in few novel adjuvants being identified. The advancement of artificial intelligence (AI) technology in drug development has provided a foundation for adjuvant screening and application, leading to a diversification of adjuvants. This article reviews the significant role of tumor vaccines in basic research and clinical treatment and explores the use of AI technology to screen novel adjuvants from databases. The findings of this review offer valuable insights for the development of new adjuvants for next-generation vaccines.
Databáze: Directory of Open Access Journals