Classifying pentavalent symmetric graphs of order 12pq

Autor: Qian Xiaorui, Ling Bo, Yang Jinlong, Zhao Yun
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Open Mathematics, Vol 22, Iss 1, Pp 459-474 (2024)
Druh dokumentu: article
ISSN: 2391-5455
DOI: 10.1515/math-2024-0096
Popis: A graph is said to be symmetric if its automorphism group is transitive on its arcs. Guo et al. (Pentavalent symmetric graphs of order 12p, Electron. J. Combin. 18 (2011), no. 1, #P233, DOI: https://doi.org/10.37236/720) and Ling (Classifying pentavalent symmetric graphs of order 24p, Bull. Iranian Math. Soc. 43 (2017), no. 6, 1855–1866) Li and Ling (Symmetric graphs and interconnection networks, Future Gener. Comput. Syst. 83 (2018), no. 1, 461–467, DOI: https://doi.org/10.1016/j.future.2017.05.016) determined all pentavalent symmetric graphs of order 12p12p, 24p24p, and 36p36p. In this article, we shall generalize these results by determining all connected pentavalent symmetric graphs of order 12pq12pq, where p>qp\gt q are distinct primes.
Databáze: Directory of Open Access Journals