Faber Polynomial Coefficient Estimates for Bi-Close-to-Convex Functions Defined by the q-Fractional Derivative

Autor: Hari Mohan Srivastava, Isra Al-Shbeil, Qin Xin, Fairouz Tchier, Shahid Khan, Sarfraz Nawaz Malik
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Axioms, Vol 12, Iss 6, p 585 (2023)
Druh dokumentu: article
ISSN: 12060585
2075-1680
DOI: 10.3390/axioms12060585
Popis: By utilizing the concept of the q-fractional derivative operator and bi-close-to-convex functions, we define a new subclass of A, where the class A contains normalized analytic functions in the open unit disk E and is invariant or symmetric under rotation. First, using the Faber polynomial expansion (FPE) technique, we determine the lth coefficient bound for the functions contained within this class. We provide a further explanation for the first few coefficients of bi-close-to-convex functions defined by the q-fractional derivative. We also emphasize upon a few well-known outcomes of the major findings in this article.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje