Faber Polynomial Coefficient Estimates for Bi-Close-to-Convex Functions Defined by the q-Fractional Derivative
Autor: | Hari Mohan Srivastava, Isra Al-Shbeil, Qin Xin, Fairouz Tchier, Shahid Khan, Sarfraz Nawaz Malik |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2023 |
Předmět: | |
Zdroj: | Axioms, Vol 12, Iss 6, p 585 (2023) |
Druh dokumentu: | article |
ISSN: | 12060585 2075-1680 |
DOI: | 10.3390/axioms12060585 |
Popis: | By utilizing the concept of the q-fractional derivative operator and bi-close-to-convex functions, we define a new subclass of A, where the class A contains normalized analytic functions in the open unit disk E and is invariant or symmetric under rotation. First, using the Faber polynomial expansion (FPE) technique, we determine the lth coefficient bound for the functions contained within this class. We provide a further explanation for the first few coefficients of bi-close-to-convex functions defined by the q-fractional derivative. We also emphasize upon a few well-known outcomes of the major findings in this article. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |