Creatine nitrate supplementation strengthens energy status and delays glycolysis of broiler muscle via inhibition of LKB1/AMPK pathway

Autor: B.B. Duan, J.W. Xu, T. Xing, J.L. Li, L. Zhang, F. Gao
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Poultry Science, Vol 101, Iss 3, Pp 101653- (2022)
Druh dokumentu: article
ISSN: 0032-5791
DOI: 10.1016/j.psj.2021.101653
Popis: ABSTRACT: This study aimed to evaluate the effects of dietary creatine nitrate (CrN) on growth performance, meat quality, energy status, glycolysis, and related gene expression of liver kinase B1/AMP-activated protein kinase (LKB1/AMPK) pathway in Pectoralis major (PM) muscle of broilers. A total of 240 male Arbor Acres broilers (28-day-old) were randomly allocated to one of 5 dietary treatments: the basal diet (control group), and the basal diets supplemented with 600 mg/kg guanidinoacetic acid (GAA), 300, 600, or 900 mg/kg CrN (identified as GAA600, CrN300, CrN600, or CrN900, respectively). We found that dietary GAA and CrN supplementation for 14 d from d 28 to 42 did not affect broiler growth performance, carcass traits, and textural characteristics of breast muscle. GAA600, CrN600, and CrN900 treatments increased pH24h and decreased drip loss of PM muscle compared with the control (P < 0.05). The PM muscles of CrN600 and CrN900 groups showed higher glycogen concentration and lower lactic acid concentration accompanied by lower activities of phosphofructokinase (PFK), pyruvate kinase (PK), and lactate dehydrogenase (LDH) (P < 0.05). Simultaneously, GAA600 and all CrN treatments increased concentration of muscle creatine, phosphocreatine (PCr) and ATP, and decreased AMP concentration and AMP/ATP ratio (P < 0.05). Meanwhile, the concentrations of muscle creatine, PCr, and ATP were increased linearly, while muscle AMP concentration and AMP/ATP ratio were decreased linearly and quadratic as the dose of CrN increased (P < 0.05). GAA600, CrN600, and CrN900 treatments upregulated mRNA expression of CreaT in PM muscle, and CrN600 and CrN900 treatments downregulated GAMT expression in liver and PM muscle compared with the control or GAA600 groups (P < 0.05). The mRNA expression of muscle LKB1, AMPKα1, and AMPKα2 was downregulated linearly in response to the increasing CrN level (P < 0.05). Overall, CrN showed better efficacy on strengthening muscle energy status and improve meat quality than GAA at the some dose. These results indicate that CrN may be a potential replacement for GAA as a new creatine supplement.
Databáze: Directory of Open Access Journals