Autor: |
Nicholas Keone Lee, Ziqi Tang, Shushan Toneyan, Peter K. Koo |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Genome Biology, Vol 24, Iss 1, Pp 1-14 (2023) |
Druh dokumentu: |
article |
ISSN: |
1474-760X |
DOI: |
10.1186/s13059-023-02941-w |
Popis: |
Abstract Deep neural networks (DNNs) hold promise for functional genomics prediction, but their generalization capability may be limited by the amount of available data. To address this, we propose EvoAug, a suite of evolution-inspired augmentations that enhance the training of genomic DNNs by increasing genetic variation. Random transformation of DNA sequences can potentially alter their function in unknown ways, so we employ a fine-tuning procedure using the original non-transformed data to preserve functional integrity. Our results demonstrate that EvoAug substantially improves the generalization and interpretability of established DNNs across prominent regulatory genomics prediction tasks, offering a robust solution for genomic DNNs. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|