EvoAug: improving generalization and interpretability of genomic deep neural networks with evolution-inspired data augmentations

Autor: Nicholas Keone Lee, Ziqi Tang, Shushan Toneyan, Peter K. Koo
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Genome Biology, Vol 24, Iss 1, Pp 1-14 (2023)
Druh dokumentu: article
ISSN: 1474-760X
DOI: 10.1186/s13059-023-02941-w
Popis: Abstract Deep neural networks (DNNs) hold promise for functional genomics prediction, but their generalization capability may be limited by the amount of available data. To address this, we propose EvoAug, a suite of evolution-inspired augmentations that enhance the training of genomic DNNs by increasing genetic variation. Random transformation of DNA sequences can potentially alter their function in unknown ways, so we employ a fine-tuning procedure using the original non-transformed data to preserve functional integrity. Our results demonstrate that EvoAug substantially improves the generalization and interpretability of established DNNs across prominent regulatory genomics prediction tasks, offering a robust solution for genomic DNNs.
Databáze: Directory of Open Access Journals