Popis: |
Transition-metal-catalyzed nitrene transfer reactions are typically performed in organic solvents under inert and anhydrous conditions due to the involved air and water-sensitive nature of reactive intermediates. Overall, this study provides insights into the iron-based ([FeII(PBI)3](CF3SO3)2 (1), where PBI = 2-(2-pyridyl)benzimidazole), catalytic and stoichiometric aziridination of styrenes using PhINTs ([(N-tosylimino)iodo]benzene), highlighting the importance of reaction conditions including the effects of the solvent, co-ligands (para-substituted pyridines), and substrate substituents on the product yields, selectivity, and reaction kinetics. The aziridination reactions with 1/PhINTs showed higher conversion than epoxidation with 1/PhIO (iodosobenzene). However, the reaction with PhINTs was less selective and yielded more products, including styrene oxide, benzaldehyde, and 2-phenyl-1-tosylaziridine. Therefore, the main aim of this study was to investigate the potential role of water in the formation of oxygen-containing by-products during radical-type nitrene transfer catalysis. During the catalytic tests, a lower yield was obtained in a protic solvent (trifluoroethanol) than in acetonitrile. In the case of the catalytic oxidation of para-substituted styrenes containing electron-donating groups, higher yield, TON, and TOF were achieved than those with electron-withdrawing groups. Pseudo-first-order kinetics were observed for the stoichiometric oxidation, and the second-order rate constants (k2 = 7.16 × 10−3 M−1 s−1 in MeCN, 2.58 × 10−3 M−1 s−1 in CF3CH2OH) of the reaction were determined. The linear free energy relationships between the relative reaction rates (logkrel) and the total substituent effect (TE, 4R-PhCHCH2) parameters with slopes of 1.48 (MeCN) and 1.89 (CF3CH2OH) suggest that the stoichiometric aziridination of styrenes can be described through the formation of a radical intermediate in the rate-determining step. Styrene oxide formation during aqueous styrene aziridination most likely results from oxygen atom transfer via in situ iron oxo/oxyl radical complexes, which are formed through the hydrolysis of [FeIII(N•Ts)] under experimental conditions. |