Nasal delivery of a CRMP2-derived CBD3 adenovirus improves cognitive function and pathology in APP/PS1 transgenic mice

Autor: Baochang Qi, Yu Yang, Yingying Cheng, Di Sun, Xu Wang, Rajesh Khanna, Weina Ju
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Molecular Brain, Vol 13, Iss 1, Pp 1-11 (2020)
Druh dokumentu: article
ISSN: 1756-6606
DOI: 10.1186/s13041-020-00596-3
Popis: Abstract Calcium dysregulation is a key pathological event in Alzheimer’s disease (AD). In studying approaches to mitigate this calcium overload, we identified the collapsin response mediator protein 2 (CRMP2), an axonal guidance protein that participates in synapse dynamics by interacting with and regulating activity of N-methyl-D-aspartate receptors (NMDARs). We further identified a 15 amino acid peptide from CRMP2 (designated CBD3, for calcium-binding domain 3), that reduced NMDAR-mediated Ca2+ influx in cultured neurons and post-synaptic NMDAR-mediated currents in cortical slices. Whether targeting CRMP2 could be therapeutically beneficial in AD is unknown. Here, using CBD3, we tested the utility of this approach. Employing the APP/PS1 mouse model of AD which demonstrates robust pathophysiology including Aβ1–42 deposition, altered tau levels, and diminished cognitive functions, we asked if overexpression of CBD3 could rescue these events. CBD3 was engineered into an adeno-associated vector and nasally delivered into APP/PS1 mice and then biochemical (immunohistochemistry, immunoblotting), cellular (TUNEL apoptosis assays), and behavioral (Morris water maze test) assessments were performed. APP/PS1 mice administered adeno-associated virus (AAV, serotype 2) harboring CBD3 demonstrated: (i) reduced levels of Aβ1–42 and phosphorylated-tau (a marker of AD progression), (ii) reduced apoptosis in the hippocampus, and (iii) reduced cognitive decline compared with APP/PS1 mice or APP/PS1 administered a control virus. These results provide an instructive example of utilizing a peptide-based approach to unravel protein-protein interactions that are necessary for AD pathology and demonstrate the therapeutic potential of CRMP2 as a novel protein player in AD.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje