Enhanced polyhydroxyalkanoate production from Mesobacillus aurentius: Statistical optimization, characterization and industrial application

Autor: Megha Mahajan, M. Kamaraj, Shanmugaselvam Gokilalakshmi, T.G. Nithya, Bhartendu Singla
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Chemical Physics Impact, Vol 9, Iss , Pp 100732- (2024)
Druh dokumentu: article
ISSN: 2667-0224
DOI: 10.1016/j.chphi.2024.100732
Popis: Synthetic plastics pose a major environmental threat and it is necessary to produce an alternative biopolymer. In the current study, the production of polyhydroxybutyrate (PHB) by Mesobacillus aurentius was enhanced using Response surface methodology (Box–Behnken design). This study explores the potential of aquabiofloc systems as a source of polyhydroxyalkanoates (PHB)-producing bacteria. The optimized medium conditions, as determined by Response Surface Methodology (RSM), included 18.68 g of sucrose, 4.0 g of yeast, an incubation period of 69.57 h, and a pH of 7.1. The ANOVA results revealed that the model developed for predicting PHA yield was highly significant (p < 0.05). The predicted PHA yield was 63.12%, while the experimental yield was 65.35%. The maximum production of PHA was obtained with sucrose and yeast as carbon and nitrogen sources. The extracted polymer was characterized using UV, FTIR, 1H NMR, and SEM-EDAX analysis confirming the polymer to be PHB. The thermal stability of the produced PHA showed degradation temperatures ranging from 310 °C. The mechanical properties of the extracted PHA were also assessed, demonstrating tensile strength and viscosity of 22.4 MPa and 1.23 MPa. respectively. The antimicrobial activity of the produced PHA was evaluated, demonstrating significant inhibitory effects against both Gram-positive and Gram-negative bacterial strains as well as fungal strains. The Cytotoxicity assessment in HepG2 cells indicated that PHB is less toxic in nature. The findings highlight the promising role of marine bacteria, Mesobacillus aurentius, in the development of environmentally friendly biopolymers. This bacterium represents a novel candidate for PHB production, offering a potential alternative to petroleum-based plastics.
Databáze: Directory of Open Access Journals