Popis: |
This paper aims to provide an in-depth study of the detection of historical alarm subsequences, which are frequently used as an initial step for alarm flood analysis methods. Therefore, state-of-the-art approaches are comprehensively examined, evaluated, and compared. To overcome the limitations of these methods, a novel approach is presented, which uses outlier detection in time distances between alarm events (activation and return to normal) and an alarm coactivation constraint. The effectiveness and performance of the examined methods are illustrated by means of an openly accessible dataset, which is introduced in this paper. It is based on the “Tennessee-Eastman-Process”, a benchmark in process automation. The intent is to provide a suitable dataset for the development and evaluation of alarm management methods in complex industrial processes using both quantitative and qualitative information from different sources. It is shown that the integration of supplementary information is beneficial for the overall performance and robustness of the detection method proposed here. This method allows for a more accurate detection of coherent historical abnormal situations, including phases with active root-cause disturbances and the normalization phases that follow their termination. Furthermore, the proposed method has the advantage that the detection results are less influenced by the alarm count, the propagation velocity, the duration of the situation, and the time distance between two causally independent situations in comparison to state-of-the-art approaches. |