Autor: |
Higuchi, Kenta |
Jazyk: |
English<br />French |
Rok vydání: |
2021 |
Předmět: |
|
Zdroj: |
Comptes Rendus. Mathématique, Vol 359, Iss 6, Pp 657-663 (2021) |
Druh dokumentu: |
article |
ISSN: |
1778-3569 |
DOI: |
10.5802/crmath.209 |
Popis: |
We consider a $2\times 2$ system of one-dimensional semiclassical Schrödinger operators with small interactions with respect to the semiclassical parameter $h$. We study the asymptotics in the semiclassical limit of the resonances near a non-trapping energy for both corresponding classical Hamiltonians. We show the existence of resonances of width $T^{-1}h\log (1/h)$, contrary to the scalar case, under the condition that two classical trajectories cross and compose a periodic trajectory with period $T$. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|