Résonances Semiclassiques Engendrées par des Croisements de Trajectoires Classiques

Autor: Higuchi, Kenta
Jazyk: English<br />French
Rok vydání: 2021
Předmět:
Zdroj: Comptes Rendus. Mathématique, Vol 359, Iss 6, Pp 657-663 (2021)
Druh dokumentu: article
ISSN: 1778-3569
DOI: 10.5802/crmath.209
Popis: We consider a $2\times 2$ system of one-dimensional semiclassical Schrödinger operators with small interactions with respect to the semiclassical parameter $h$. We study the asymptotics in the semiclassical limit of the resonances near a non-trapping energy for both corresponding classical Hamiltonians. We show the existence of resonances of width $T^{-1}h\log (1/h)$, contrary to the scalar case, under the condition that two classical trajectories cross and compose a periodic trajectory with period $T$.
Databáze: Directory of Open Access Journals